There exists a wealth of means of efficient utilization of solar energy in nature, with photosynthesis of chlorophylls as a prime example. Separately, artificially structured plasmonic materials are versatile in light harvesting and energy conversion. Using a simple and scalable design of near-percolating silver nanostructures, we demonstrate that the light-harvesting efficiency of chlorophylls can be drastically enhanced by tuning the plasmon frequency of the constituent silver nanoparticles to coincide with the maximal photon flux of sunlight. In particular, we show that the photon upconversion efficiency can be readily enhanced by over 20 folds, with the room-temperature fluorescence quantum yield increased by a factor of 2.63. The underlying mechanism for the upconversion enhancement is attributed to a one-electron-per-photon anti-Stokes process, involving absorption of a characteristic phonon mode of the chlorophylls. These findings suggest that chlorophylls can serve as molecular building blocks for high-efficiency light harvesting and solar energy conversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659322 | PMC |
http://dx.doi.org/10.1038/srep01861 | DOI Listing |
Materials (Basel)
January 2025
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.
Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.
View Article and Find Full Text PDFGenes (Basel)
January 2025
College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare.
View Article and Find Full Text PDFBiomolecules
January 2025
Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
The genome of the mildly thermophilic hot spring purple sulfur bacterium, (.) , contains a multigene family that encodes a series of α- and β-polypeptides, collectively forming a heterogeneous light-harvesting 1 (LH1) complex. The LH1, therefore, offers a unique model for studying an intermediate phenotype between phototrophic thermophilic and mesophilic bacteria, particularly regarding their LH1 transition and moderately enhanced thermal stability.
View Article and Find Full Text PDFBiomolecules
January 2025
College of Life Science, Sichuan Agricultural University, Ya'an 625000, China.
Photosynthesis, which is the foundation of crop growth and development, is accompanied by complex transcriptional regulatory mechanisms. Research has established that brassinosteroids (BRs) play a role in regulating plant photosynthesis, with the majority of research focusing on the physiological level and regulation of rate-limiting enzymes in the dark reactions of photosynthesis. However, studies on their effects on maize photosynthesis, specifically on light-harvesting antenna proteins, have yet to be conducted.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Chemical Sciences & Technology, School of Materials and Energy, Yunnan Provincial Center of Technology Innovation for New Materials and Equipment in Water Pollution Control, Institute of International Rivers and Eco-Security, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO/TiO was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO(1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!