Background/aims: The common polymorphism in the FTO gene (rs9939609) has been associated with obesity, type 2 diabetes, and appetite regulation. The aim of this study was to evaluate possible associations of FTO rs9939609 with dietary factors in patients with type 2 diabetes.

Methods: This was a cross-sectional study of 236 patients with type 2 diabetes (age 60.0 ± 10.3 years; diabetes duration 12.7 ± 8.2 years; 53.4% females) who were genotyped for FTO rs9939609. Patients underwent clinical and laboratory evaluations and 3-day weighed diet records. Data on dietary intake were categorized as high or low, based on median values.

Results: The AA genotype in the FTO gene was positively associated with high fat (>34% energy; OR = 2.17; 95% CI 1.02-4.63) and low fiber intakes (<16 g/day; OR = 2.42; 95% CI 1.05-5.57), adjusted for gender, BMI, total energy intake, systolic blood pressure, and HbA1c. When gender was taken into account, AA females had higher fat (37.4 ± 5.3 vs. 32.6 ± 7.5 and 32.2 ± 6.2% energy; p = 0.005) and lower fiber intakes (12.4 ± 4.4 vs. 15.1 ± 6.3 and 16.7 ± 5.6 g/day; p = 0.023) than patients with TT and AT genotypes. Multiple logistic regression models confirmed female associations for high fat (OR = 9.73; 95% CI 2.12-44.66) and low fiber intakes (OR = 4.28; 95% CI 1.14-16.06; p < 0.05 for all models).

Conclusions: Patients with type 2 diabetes, who were carriers of the AA genotype of the FTO rs9939609, had increased fat and decreased fiber consumption, independently of BMI.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000350741DOI Listing

Publication Analysis

Top Keywords

fto gene
12
patients type
12
type diabetes
12
polymorphism fto
8
fiber intakes
8
fto rs9939609
8
fto
5
rs9939609
4
rs9939609 polymorphism
4
gene associated
4

Similar Publications

Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.

Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.

View Article and Find Full Text PDF

IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression.

Cell Death Discov

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.

View Article and Find Full Text PDF

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

: Previous studies suggest that there is a genetically determined component of fat oxidation at rest and during exercise. To date, the gene has been proposed as a candidate gene to affect fat oxidation during exercise because of the association of the "at-risk" A allele with different obesity-related factors such as increased body fat, higher appetite and elevated insulin and triglyceride levels. The A allele of the gene may also be linked to obesity through a reduced capacity for fat oxidation during exercise, a topic that remains largely underexplored in the current literature.

View Article and Find Full Text PDF

and Regulate Heat Stress Response in Hu Sheep Through Lipid Metabolism via m6A Modification.

Animals (Basel)

January 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

In an established hepatocyte lipid deposition heat stress model, the expression levels of and were significantly upregulated ( < 0.05), indicating that and play important roles in the process of lipid deposition heat stress in hepatocytes. Transcriptome and metabolome analyses showed that lipid deposition heat stress had significant effects on the linoleic acid, linolenic acid, glycerophospholipid, and arachidonic acid metabolic pathways in hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!