A new rice floral organ mutant bh1 , had a negative effect on grain yield. BH1 was fine mapped to 87.5 kb on chr2. A 55 kb chromosome segment was deleted in bh1. The cereal spikelet is enclosed by the lemma and palea. The lemma and palea of the floral mutant designated bh1, a selection from a T-DNA library generated from the rice cultivar Asominori, takes on an abnormal curve-shaped appearance only late in floral development, finally forming a beak-shaped hull. The mutation had a negative effect on thousand grain weight, seed set rate and germination rate. Genetic analysis indicated that the mutant phenotype was determined by a single recessive gene. Through map-based approach, BH1 gene was finally located to a ~87.5-kbp region on the long arm of chromosome 2. An analysis of the gene content of this region indicated that the mutation involves the loss of a 55-kbp stretch, harboring four open reading frames. Transcription profiling based on qRT-PCR revealed that the genes OsMADS1, OsMADS14, OsMADS15, OsMADS18, REP1, CFO1, and DL, all of which are also involved in lemma and palea development and identity specification, were down-regulated in the bh1 mutant. BH1 is therefore an important floral organ development gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-013-1457-7 | DOI Listing |
Int J Mol Sci
December 2024
N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia.
In barley having adherent hulls, an irreversible connection between the pericarp with both palea and lemma is formed during grain maturation. A mutation in the () gene prevents this connection and leads to the formation of barley with non-adherent hulls. A genetic model of two isogenic lines was used to elucidate the genetic mechanisms of hull adhesion: a doubled haploid line having adherent hulls and its derivative with non-adherent hulls obtained by targeted mutagenesis of the gene.
View Article and Find Full Text PDFRice (N Y)
November 2024
School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
The roles of plant-specific transcription factor family YABBY may vary among different members. OsYABBY6 is a rice YABBY gene, whose function is not well elucidated so far. In this paper, we show that OsYABBY6 is a nucleus-localized protein with transcriptional activation activity.
View Article and Find Full Text PDFPlant J
September 2024
Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2024
Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 1000101, China. Electronic address:
Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress.
View Article and Find Full Text PDFBMC Plant Biol
June 2024
Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
Background: Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!