Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719679PMC
http://dx.doi.org/10.1128/MCB.00011-13DOI Listing

Publication Analysis

Top Keywords

granulosa cells
12
androgen receptor
8
aryl hydrocarbon
8
hydrocarbon receptor
8
liver receptor
8
receptor homolog
8
cells androgens
8
ovarian function
8
response granulosa
8
dht
8

Similar Publications

Ovarian granulosa cells produce a variety of biologically active compounds in addition to steroid hormones that include numerous families of growth factors, cytokines and adipokines. Many of these function as endocrine, paracrine and autocrine hormones to regulate ovarian activity. The goal of this review is to provide an update on the evidence in domestic animals on how FSH, insulin and IGF1 regulate the function of granulosa cells with a focus on ovarian steroidogenesis and cell proliferation with comparisons across six domestic animals: pigs, cattle, horses, water buffalo, goats and sheep.

View Article and Find Full Text PDF

The role of Anti-Müllerian hormone in women health.

Ginekol Pol

January 2025

Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, Poland, Poland.

Anti-Müllerian hormone (AMH), also known as Müller duct inhibitory factor and primarily known for its role in sexual differentiation. In female fetuses, AMH production by granulosa cells begins around the 36th week of gestation and continues in women until menopause. It is becoming more significant in the endocrine and gynecological diagnosis of adult women.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The aim of this study was to elucidate the effects of Schisandra rubriflora (S. rubriflora) on PCOS and its related mechanisms using network pharmacology, molecular docking and in vitro experiments.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting women of reproductive age. Oxidative stress (OS) is suggested to play a significant role in the development of PCOS. Using antioxidants to reduce OS and maintain a healthy balance in the body could be a novel treatment approach for PCOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!