Objective: To develop a novel real-time PCR for sensitively quantitative detection of JAK2 V617F allele burden in peripheral blood.
Methods: Based on the real-time allele-specific PCR (AS-qPCR), the locked nucleic acid (LNA)-modified oligonucleotide probe was used for selectively blocking amplification of wild-type alleles in AS-qPCR, and then a novel AS-LNA-qPCR method was established. The percentages of sample JAK2 V617F alleles were directly calculated by its threshold cycle (Ct) values according to the standard curve which generated by JAK2 V617F alleles with its Ct values. We validated intra- and inter-assay variability for quantifying JAK2 V617F. We also assayed 623 apparent healthy donors by our method to validate its clinical application value.
Results: The quantitative lower limit of this method for JAK2 V617F was 0.01%, and the intra- and inter-assay average variability for quantifying percentage of JAK2 V617F in total DNA was 6.3% and 8.6%, respectively. Nineteen JAK2 V617F-positive individuals were identified using AS-LNA-qPCR in blood of 623 apparently healthy donors, and the range of percentages of JAK2 V617F alleles were 0.01%-5.49%.
Conclusion: The AS-LNA-qPCR with highly sensitive and reproducible quantification of JAK2 V617F mutant burden can be used clinically for diagnosis as well as evaluation of disease prognosis and efficacy of therapy in patients with myeloproliferative neoplasms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.issn.0253-2727.2013.05.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!