AI Article Synopsis

  • Brain uptake of standard acetate is inadequate for accurately imaging astrocytic oxidative metabolism.
  • Researchers created a new compound, benzyl [1-(11)C]acetate ([1-(11)C]BA), which showed significantly improved brain uptake in PET studies.
  • The findings suggest that [1-(11)C]BA may serve as an effective PET probe for evaluating the oxidative metabolism of astrocytes, as its uptake was reduced by fluorocitrate.

Article Abstract

Brain uptake of acetate is insufficient for obtaining a quantitative image of astrocytic oxidative metabolism. To improve the brain uptake of [1-(11)C]acetate, we synthesized benzyl [1-(11)C]acetate ([1-(11)C]BA) and conducted a positron emission tomography (PET) study assessing astrocytic oxidative metabolism. The brain uptake of [1-(11)C]BA was markedly higher compared with [1-(11)C]acetate, and disappeared with a half-life of 20 min in all regions studied. The brain uptake of [1-(11)C]BA was significantly decreased by fluorocitrate. The results indicate that [1-(11)C]BA could be a useful PET probe for assessing astrocytic oxidative metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2013.04.025DOI Listing

Publication Analysis

Top Keywords

brain uptake
20
astrocytic oxidative
16
oxidative metabolism
16
benzyl [1-11c]acetate
8
assessing astrocytic
8
uptake [1-11c]ba
8
uptake
5
improvement brain
4
uptake vivo
4
vivo pet
4

Similar Publications

Background: A dual-syndrome hypothesis, which states the cognitive impairments in Parkinson's disease (PD) are attributable to frontostriatal dopaminergic dysregulation and cortical disturbance-each associated with attention/executive and memory/visuospatial dysfunction, respectively-has been widely accepted. This multisystem contribution also underlies highly heterogeneous progression rate to dementia.

Methods: Nondemented PD patients who underwent [I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ([I]FP-CIT) SPECT and neuropsychological examinations were enrolled.

View Article and Find Full Text PDF

Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic-pituitary-adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling.

View Article and Find Full Text PDF

Transferrin Receptor (TfR)-mediated transcytosis across the blood-brain barrier (BBB) enables the uptake of bispecific therapeutic antibodies into the brain. At therapeutically relevant concentrations, bivalent binding to TfR appears to reduce the transcytosis efficiency by receptor crosslinking. In this study, we aimed to improve BBB transcytosis of symmetric antibodies through minimizing their ability to cause TfR crosslinking.

View Article and Find Full Text PDF

Development and evaluation of deuterated [F]JHU94620 isotopologues for the non-invasive assessment of the cannabinoid type 2 receptor in brain.

EJNMMI Radiopharm Chem

December 2024

Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.

Background: The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood-brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d and -d deuterated isotopologues of [F]JHU94620.

View Article and Find Full Text PDF

Estimating the energy of dissipative neural systems.

Cogn Neurodyn

December 2024

First Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

There is, at present, a lack of consensus regarding precisely what is meant by the term 'energy' across the sub-disciplines of neuroscience. Definitions range from deficits in the rate of glucose metabolism in consciousness research to regional changes in neuronal activity in cognitive neuroscience. In computational neuroscience virtually all models define the energy of neuronal regions as a quantity that is in a continual process of dissipation to its surroundings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: