The susceptibility to rupture of the microalgae Nannochloropsis sp., Chlorella sp. and Tetraselmis suecica by high pressure homogenization was compared quantitatively to the yeast Saccharomyces cerevisiae. Methods for quantifying cell rupture were investigated including cell counting, turbidity, metabolite release and particle sizing. Cell counting was the only reliable method for quantitative comparisons of all microalgae, with turbidity complicated by agglomeration of cell debris for T. suecica, and measurement of metabolite release affected by degradation occurring for all microalgae after significant rupture. The rupture of all microalgae followed exponential decay as a function of number of passes. The pressure required to achieve rupture of 50% of the cells per pass was determined to be 170, 1070, 1380, and ca. 2000 bar for Tetraselmis sp., Chlorella sp., S. cerevisiae, and Nannochloropsis sp., respectively. These results extend the criteria for selecting microalgae for industrial applications beyond consideration of growth and compositional attributes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.04.074DOI Listing

Publication Analysis

Top Keywords

high pressure
8
pressure homogenization
8
rupture microalgae
8
cell counting
8
metabolite release
8
rupture
6
microalgae
6
quantitative evaluation
4
evaluation ease
4
ease rupture
4

Similar Publications

Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China.

Viruses

December 2024

Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.

View Article and Find Full Text PDF

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.

View Article and Find Full Text PDF

Flexible Piezoresistive Film Pressure Sensor Based on Double-Sided Microstructure Sensing Layer.

Sensors (Basel)

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

Flexible thin-film pressure sensors have garnered significant attention due to their applications in industrial inspection and human-computer interactions. However, due to their ultra-thin structure, these sensors often exhibit lower performance, including a narrow pressure response range and low sensitivity, which constrains their further application. The most commonly used microstructure fabrication methods are challenging to apply to ultra-thin functional layers and may compromise the structural stability of the sensors.

View Article and Find Full Text PDF

Tire pressure monitoring systems (TPMSs) are essential for maintaining driving safety by continuously monitoring critical tire parameters, such as pressure and temperature, in real time during vehicle operation. Among these parameters, tire pressure is the most significant, necessitating the use of highly precise, cost-effective, and energy-efficient sensing technologies. With the rapid advancements in micro-electro-mechanical system (MEMS) technology, modern automotive sensing and monitoring systems increasingly rely on MEMS sensors due to their compact size, low cost, and low power consumption.

View Article and Find Full Text PDF

This paper introduces a Coriolis mass flow and density sensor. The sensor is made using Surface Channel Technology (SCT) but with selective wet etching to create the channels. This method forms suspended microfluidic channels with a larger cross-sectional area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!