Achieving highly ordered and aligned assemblies of organic semiconductors is a persistent challenge for improving the performance of organic electronics. This is an acute problem in macromolecular systems where slow kinetics and long-range disorder prevail, thus making the fabrication of high-performance large-area semiconducting polymer films a nontrivial venture. Here, we demonstrate that the anisotropic nature of semiconducting chromophores can be effectively leveraged to yield hierarchically ordered materials that can be readily macroscopically aligned. An n-type mesogen was synthesized based on a perylene diimide (PDI) rigid core coupled to an imidazole headgroup via an alkyl spacer. Supramolecular assembly between the imidazole and acrylic acid units on a poly(styrene-b-acrylic acid) block copolymer yielded self-assembled hexagonally ordered polystyrene cylinders within a smectic A mesophase of the PDI mesogen and poly(acrylic acid). We show that magnetic fields can be used to control the alignment of the PDI species and the block copolymer superstructure concurrently in a facile manner during cooling from a high-temperature disordered state. The resulting materials are monoliths, with a single well-defined orientation of the semiconducting chromophore and block copolymer microdomains throughout the sample. This synergistic introduction of both functional properties and the means of controlling alignment by supramolecular attachment of mesogenic species to polymer backbones offer new possibilities for the modular design of functional nanostructured materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn401725aDOI Listing

Publication Analysis

Top Keywords

block copolymer
12
monoliths semiconducting
4
block
4
semiconducting block
4
block copolymers
4
copolymers magnetic
4
magnetic alignment
4
alignment achieving
4
achieving highly
4
highly ordered
4

Similar Publications

Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.

J Colloid Interface Sci

January 2025

Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:

High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.

View Article and Find Full Text PDF

The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.

View Article and Find Full Text PDF

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.

View Article and Find Full Text PDF

Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!