Design of affordable and ruggedized biomedical devices using virtual instrumentation.

J Med Eng Technol

Humanitarian Engineering and Social Entrepreneurship, Pennsylvania State University, State College 16802, USA.

Published: May 2013

AI Article Synopsis

  • The paper outlines the creation of four affordable biomedical devices (blood pressure monitor, thermometer, weighing scale, and spirometer) specifically designed for the East African context, focusing on a mass-production price of $10 and durability in harsh conditions.
  • The blood pressure monitor, thermometer, and weighing scale showed a 6% error margin compared to commercial devices and performed well in field tests in Kenya, while suggesting the spirometer requires redesign for better usability.
  • The article emphasizes the potential for developing effective biomedical devices in resource-limited settings, proposing further improvements for easier manufacturing, standardized materials, field calibration, and enhanced user software.

Article Abstract

Abstract This paper presents the designs of four low-cost and ruggedized biomedical devices, including a blood pressure monitor, thermometer, weighing scale and spirometer, designed for the East African context. The design constraints included a mass-production price point of $10, accuracy and precision comparable to commercial devices and ruggedness to function effectively in the harsh environment of East Africa. The blood pressure device, thermometer and weighing scale were field-tested in Kenya and each recorded data within 6% error of the measurements from commercial devices and withstood the adverse climate and rough handling. The spirometer functioned according to specifications, but a re-design is needed to improve operability and usability by patients. This article demonstrates the feasibility of designing and commercializing virtual instrumentation-based biomedical devices in resource-constrained environments through context-driven design. The next steps for the devices include designing them such that they can be more easily manufactured, use standardized materials, are easily calibrated in the field and have more user-friendly software programs that can be updated remotely.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03091902.2013.785608DOI Listing

Publication Analysis

Top Keywords

biomedical devices
12
ruggedized biomedical
8
blood pressure
8
thermometer weighing
8
weighing scale
8
commercial devices
8
devices
6
design affordable
4
affordable ruggedized
4
devices virtual
4

Similar Publications

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).

Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Detection of Extracochlear Electrodes Using Electrical Field Imaging (EFI).

Otol Neurotol

February 2025

Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.

Objective: To analyze the use of electrical field imaging (EFI) in the detection of extracochlear electrodes in cochlear implants (CI).

Study Design: Retrospective cohort study.

Setting: Tertiary academic medical center.

View Article and Find Full Text PDF

Objective: The aim of this study is to test the feasibility of a custom 3D-printed guide for performing a minimally invasive cochleostomy for cochlear implantation.

Study Design: Prospective performance study.

Setting: Secondary care.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the potential association of perioperative hearing outcomes with frailty by Modified 5-Item Frailty Index (mFI-5).

Design: Retrospective cross-sectional study.

Setting: Single-institutional study conducted at a tertiary care hospital between January 2018 and January 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!