Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent paradox is consistent with reports from other systems and may be the result of variation in environmental factors at larger scales similarly influencing both invasibility and richness. The habitat loss and fragmentation associated with woody plant encroachment are two of many processes that commonly threaten biodiversity, including climate change. Many of these processes are similarly likely to increase invasibility via their negative effects on native diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/12-0732.1 | DOI Listing |
Landsc Ecol
January 2025
Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
Context: Historical land use is thought to have influenced plant community diversity, composition and function through the local persistence of taxa that reflect ecological conditions of the past.
Objectives: We tested for the effects of historical land use on contemporary plant species richness, composition, and ecological preferences in the grassland vegetation of Central Europe.
Methods: We analyzed 6975 vegetation plots sampled between 1946 and 2021 in dry, mesic, and wet grasslands in the borderland between Austria, the Czech Republic, and Slovakia.
Front Parasitol
January 2024
Department of Biology, McGill University, Montreal, QC, Canada.
With climate and land use changes, tick-borne pathogens are expected to become more widely distributed in Canada. Pathogen spread and transmission in this region is modulated by changes in the abundance and distribution of tick and host populations. Here, we assessed the relationships between pathogens detected in and mammal hosts at sites of different levels of disease risk using data from summer field surveys in Ontario and Quebec, Canada.
View Article and Find Full Text PDFHeliyon
July 2024
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, 201306, China.
The fishery resources in the Yangtze River Estuary (YRE) have declined drastically because of overfishing and environmental changes, leading to ecosystem degradation of the YRE, and bringing numerous rare fish species to the brink of extinction. As a new technology with great prospects for popularization and application, environmental DNA (eDNA) technology has been utilized and proven by many studies to have high potential in revealing the various species' biodiversity. In this study, we analyzed the species composition and diversity of the Yangtze River Estuary using a combination of eDNA technology and bottom trawling approaches, and later, the comparison of both methods.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate Program in Biodiversity and Nature Conservation, Federal University of Juiz de Fora (UFJF), Minas Gerais State, Brazil; Plant Ecology Laboratory, Department of Botany, Federal University of Juiz de Fora, Juiz de Fora (UFJF), Minas Gerais State, Brazil. Electronic address:
Research about patterns of aboveground carbon stock (AGC) across different tropical forest types is central to climate change mitigation efforts. However, the aboveground carbon stock (AGC) quantification for Brazilian cloud forest ecosystems along the altitudinal gradient is still scarce. We aimed to evaluate the effects of abiotic and biotic on AGC and the AGC distribution between species and families of tree communities along an altitudinal Brazilian Atlantic cloud forest gradient of the Mantiqueira Mountain Range, Southeastern Brazil.
View Article and Find Full Text PDFSci Total Environ
January 2025
Grupo de Ecología y Evolución de Vertebrados, Universidad de Antioquia, Colombia.
Environmental characteristics drastically shape the host-parasite associations under natural conditions. This is the case of parasites such as avian haemosporidians which naturally infect birds and are transmitted by insect vectors. Landscape characteristics are known to determine the epidemiology of transmission of these parasites in the wild, but the strength of these factors may differ at different spatial scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!