Biological motors are molecular nanomachines, which convert chemical energy into mechanical forces. The combination of mechanoenzymes with structural components, such as the cytoskeleton, enables eukaryotic cells to overcome entropy, generate molecular gradients, and establish polarity. Hyphae of filamentous fungi are among the most polarized cells, and polarity defects are most obvious. Here, we studied the role of the kinesin-3 motor, NKIN2, in Neurospora crassa. We found that NKIN2 localizes as fast-moving spots in the cytoplasm of mature hyphae. To test whether the spots represented early endosomes, the Rab5 GTPase YPT52 was used as an endosomal marker. NKIN2 colocalized with YPT52. Deletion of nkin2 caused strongly reduced endosomal movement. Combined, these results confirm the involvement of NKIN2 in early endosome transport. Introduction of a rigor mutation into NKIN2 labeled with green fluorescent protein (GFP) resulted in decoration of microtubules. Interestingly, NKIN2(rigor) was associated with a subpopulation of microtubules, as had been shown earlier for the Aspergillus nidulans orthologue UncA. Other kinesins did not show this specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697463 | PMC |
http://dx.doi.org/10.1128/EC.00081-13 | DOI Listing |
Curr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.
A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Antifungal resistance, particularly the rise of multidrug-resistance strains, poses a significant public health threat. In this study, the study identifies a novel multidrug-resistance gene, msp-8, encoding a helicase, through experimental evolution with Neurospora crassa as a model. Deletion of msp-8 conferred multidrug resistance in N.
View Article and Find Full Text PDFmSphere
December 2024
Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
The widespread use of azole antifungals in agriculture and clinical settings has led to serious drug resistance. Overexpression of the azole drug target 14α-demethylase ERG11 (CYP51) is the most common fungal resistance mechanism. However, the presence of additional regulatory proteins in the transcriptional response of is not yet fully elucidated.
View Article and Find Full Text PDFGenetics
November 2024
Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan.
Hyphal elongation is the vegetative growth of filamentous fungi, and many species continuously elongate their hyphal tips over long periods. The details of the mechanisms for maintaining continuous growth are not yet clear. A novel short lifespan mutant of N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!