Background: Genetically modified MON 87701 × MON 89788 soybean (Glycine max) that expresses the Cry1Ac and EPSP-synthase proteins is a new Integrated Pest Management (IPM) tool for controlling Heliothis virescens in Brazil. To Support Insect Resistance Management (IRM) programs and understand the value of this event for IPM, we conducted laboratory and field studies to assess the biological activity of Cry1Ac protein expressed on Bt soybean against this insect pest.
Results: Heliothis virescens was highly susceptible to purified Cry1Ac protein [LC50 (FL 95%) = 0.026 (0.021-0.033) µg Cry1Ac mL(-1) diet]. In bioassays with freeze-dried MON 87701 × MON 89788 soybean tissue diluted 25 times in an artificial diet, there was 100% mortality of H. virescens. In bioassays with leaf disc, young trifoliate, flower buds, pods and high artificial infestation under greenhouse condition, MON 87701 × MON 89788 soybean showed a high level of control against H. virescens. Moreover, larvae from first through fifth instar were highly susceptible to MON 87701 × MON 89788 soybean.
Conclusions: The MON 87701 × MON 89788 soybean provides an effective alternative in controlling Heliothis virescens and complies with the concept of high-dose for IRM programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.3581 | DOI Listing |
Insects
September 2023
Department of Plant Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria 97105-900, Brazil.
An increase in species was reported in Bt soybean fields expressing Cry1Ac insecticidal proteins in Brazil, requiring additional management with chemical insecticides. Here, we evaluated the dose effects of flubendiamide and thiodicarb on (Walker, 1858), (Stoll, 1782), (Walker, 1857) and (J. E.
View Article and Find Full Text PDFFollowing the submission of application EFSA-GMO-RX-021 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified soybean MON 87701, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.
View Article and Find Full Text PDFFollowing the submission of application EFSA-GMO-RX-022 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant and herbicide-tolerant genetically modified soybean MON 87701 × MON 89788, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application.
View Article and Find Full Text PDFPest Manag Sci
February 2023
Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil.
Background: MON 87701 × MON 89788 × MON 87751 × MON 87708 soybean, that expresses Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins and confers tolerance to glyphosate and dicamba, is a potential tool for managing Spodoptera species in soybean fields in Brazil. In this study, we characterized the lethal and sub-lethal effects of Cry1A.
View Article and Find Full Text PDFSci Rep
October 2021
Regulatory Science, Bayer Crop Science US, Chesterfield, MO, USA.
Widespread adoption of MON 87701 × MON 89788 soybean, expressing Cry1Ac Bt protein and glyphosate tolerance, has been observed in Brazil. A proactive program was implemented to phenotypically and genotypically monitor Cry1Ac resistance in Chrysodeixis includens (Walker). Recent cases of unexpected injury in MON 87701 × MON 89788 soybean were investigated and a large-scale sampling of larvae on commercial soybean fields was performed to assess the efficacy of this technology and the distribution of lepidopteran pests in Brazil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!