Piezoelectric nanostructured quartz films of high resonance frequencies are needed for microelectronic devices; however, synthesis methods have been frustrated by the inhomogeneous crystal growth, crystal twinning, and loss of nanofeatures upon crystallization. We report the epitaxial growth of nanostructured polycrystalline quartz films on silicon [Si(100)] substrates via the solution deposition and gelation of amorphous silica thin films, followed by thermal treatment. Key to the process is the combined use of either a strontium (Sr(2+)) or barium (Ba(2+)) catalyst with an amphiphilic molecular template. The silica nanostructure constructed by cooperative self-assembly permits homogeneous distribution of the cations, which are responsible for the crystallization of quartz. The low mismatch between the silicon and α-quartz cell parameters selects this particular polymorph, inducing epitaxial growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1232968 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!