Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The zero-mean normalized cross-correlation is shown to improve the accuracy of optical flow, but its analytical form is quite complicated for the variational framework. This paper addresses this issue and presents a new direct approach to this matching measure. Our approach uses the correlation transform to define very discriminative descriptors that are precomputed and that have to be matched in the target frame. It is equivalent to the computation of the optical flow for the correlation transforms of the images. The smoothness energy is non-local and uses a robust penalty in order to preserve motion discontinuities. The model is associated with a fast and parallelizable minimization procedure based on the projected-proximal point algorithm. The experiments confirm the strength of this model and implicitly demonstrate the correctness of our solution. The results demonstrate that the involved data term is very robust with respect to changes in illumination, especially where large illumination exists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2013.2263149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!