Stress and development in Dictyostelium discoideum: the involvement of the catalytic calcineurin A subunit.

J Basic Microbiol

Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin, Berlin, Germany.

Published: June 2014

Calcium signaling is one of the most important signaling-pathways in all eukaryotes. One important target activated by an increased intracellular calcium concentration via calmodulin is the protein phosphatase calcineurin, which is composed of a catalytic subunit (calcineurin A) and a regulatory subunit (calcineurin B). The importance of calcium and calcineurin for the differentiation and development of the social amoeba Dictyostelium discoideum has already been shown by pharmacological approaches. However, so far only a RNAi-silenced calcineurin B mutant has been investigated on a molecular level. Here, we describe the construction and phenotypic investigation of a RNAi-silenced calcineurin A mutant. Phenotypic aberrations during development resemble those produced by silencing of calcineurin B with ectopic tip formation of the fruiting bodies. Additionally, we tested the response of the mutants under various stress conditions in liquid culture as well as during development. Both, calcineurin A and B RNAi-mutants, are hypersensitive during development towards cation stress. Besides its role in development, calcineurin is thus also involved in the stress response in D. discoideum. Further, our data imply that many functions of calcineurin are conserved among the eukaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201200574DOI Listing

Publication Analysis

Top Keywords

calcineurin
11
dictyostelium discoideum
8
subunit calcineurin
8
rnai-silenced calcineurin
8
calcineurin mutant
8
development calcineurin
8
development
5
stress
4
stress development
4
development dictyostelium
4

Similar Publications

Background: Patients with end-stage kidney disease often prefer home-based dialysis due to higher self-efficacy, which relates to improved medical treatment adherence. Kidney transplantation (KT) success depends on adhering to immunosuppressive medication post-transplant.

Objectives: To investigate whether adherence post-kidney transplantation (KT) and patients' attitudes toward immunosuppression were influenced by their prior dialysis type modality.

View Article and Find Full Text PDF

Tacrolimus and mycophenolate are important immunosuppressive agents used to prevent organ rejection in post-transplant patients. While highly effective, their use is associated with significant toxicity, requiring careful management. Tacrolimus, a calcineurin inhibitor, is linked to nephrotoxicity, neurotoxicity, metabolic disturbances such as diabetes mellitus and dyslipidemia, and cardiovascular complications such as hypertension and arrhythmias.

View Article and Find Full Text PDF

Introduction: TNFα inhibitor (TNFi) immunogenicity in rheumatoid arthritis (RA) is a major obstacle to its therapeutic effectiveness. Although methotrexate (MTX) can mitigate TNFi immunogenicity, its adverse effects necessitate alternative strategies. Targeting nuclear factor of activated T cells (NFAT) transcription factors may protect against biologic immunogenicity.

View Article and Find Full Text PDF

Can you have a cake and eat it? Comparing reducing mycophenolate versus switching to everolimus for kidney transplants with new-onset BKPyV-DNAemia.

Kidney Int

February 2025

Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel Switzerland. Electronic address:

BK polyomavirus remains a vexing issue in kidney transplantation. There are no antiviral drugs, and solely reducing immunosuppression is recommended for management. However, evidence from randomized controlled studies lacks defining clearance of BK polyomavirus-DNAemia and/or nephropathy as a primary outcome.

View Article and Find Full Text PDF

Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!