Objectives/hypothesis: Obstructive sleep apnea (OSA) is a sleep disorder caused by partial or complete collapse of the pharyngeal airway. Genioglossal advancement (GGA) is a well-tolerated surgical procedure intended to address hypopharyngeal collapse, yet there are few studies that monitor changes in airflow dynamics at this site. Computation fluid dynamics (CFD) utilizes airflow simulation to predict changes in airflow after anatomic manipulation.

Study Design: We investigated the change in volume and airflow dynamics of the pharyngeal airway after GGA in a cadaveric model.

Methods: We performed serial GGA from 1 mm (control) to 3, 7, and 9 mm on a lightly preserved cadaver. After each intervention, we performed high-resolution computed tomography scans, reconstructed the pharyngeal airway, and quantified airspace volume and CFD analysis with both laminar and large eddy simulation models.

Results: Airway volume increased with linear GGA. In both CFD simulation models, velocity increased and pressure decreased after 9-mm advancement secondary to increased airway diameter and less abrupt changes in airway geometry.

Conclusions: These results suggest that GGA may be effective in increasing airway volume and flow to address hypopharyngeal obstruction in OSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783525PMC
http://dx.doi.org/10.1002/lary.24203DOI Listing

Publication Analysis

Top Keywords

pharyngeal airway
12
airway
8
address hypopharyngeal
8
changes airflow
8
airflow dynamics
8
airway volume
8
gga
5
geniglossal advancement
4
advancement airway
4
airway flow
4

Similar Publications

Objective: Endoscopic arytenoid abduction lateropexy (EAAL) is a minimally invasive surgical technique for the immediate management of bilateral vocal fold palsy (BVFP). Specifically, it achieves a stable and adequate airway by lateralizing the arytenoid cartilage without resecting laryngeal structures. Thus, this study evaluated the effect of EAAL on swallowing in cases of BVFP.

View Article and Find Full Text PDF

Comparison of treatments for equine laryngeal hemiplegia using computational fluid dynamic analysis in an equine head model.

Front Vet Sci

December 2024

Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

Introduction: Computational fluid dynamics (CFD) is gaining momentum as a useful mechanism for analyzing obstructive disorders and surgeries in humans and warrants further development for application in equine surgery. While advancements in procedures continue, much remains unknown about the specific impact that different surgeries have on obstructive airway disorders. The objective of this study was to apply CFD analysis to an equine head inhalation model replicating recurrent laryngeal neuropathy (RLN) and four surgical procedures.

View Article and Find Full Text PDF

Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.

View Article and Find Full Text PDF

Background: The aim of this study was to evaluate the correlation of the volume and minimum axial area (MAA) measurements between different upper and lower boundaries used for oropharyngeal airway assessment.

Methods: Cone Beam Computed Tomography (CBCT) scans of 49 subjects taken for pre-orthognathic surgical planning were obtained retrospectively from the archives (n = 49; 32 females, 17 males; mean age = 20.9 ± 5.

View Article and Find Full Text PDF

Aim: In this study, it was aimed to determine the changes in the anatomic structures of individuals with obstructive sleep apnea syndrome (OSAS) classified according to the apnea-hypopnea index (AHI).

Materials And Methods: Individuals were divided into groups as group 1 (AHI=0, n=20), group 2 (AHI ˂5, n=20), group 3 (AHI=5-15, n=20), group 4 (AHI=16-30, n=20), group 5 (AHI ˃30, n=20). The individuals left lateral cervical vertebra radiographs were taken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!