Human methicillin-sensitive Staphylococcus aureus biofilms: potential associations with antibiotic resistance persistence and surface polysaccharide antigens.

J Basic Microbiol

School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, West Australian Biomedical Research Institute, Curtin University, Bentley Campus, Perth, WA, Australia.

Published: July 2014

The development of persistent antibiotic resistance by human methicillin-sensitive Staphylococcus aureus (MSSA) strains and substantial association with poly-N-acetyl glucosamine (PNAG) in biofilms is reported in this investigation. Sixteen of 31 MSSA strains under study were found to have developed resistance to one or more antibiotics, with four strains, two of which did not produce biofilms, showing resistance to cefoxitin, undetectable by mecA amplification. Antibiotic resistance displayed by 13/14 biofilm-forming S. aureus isolates remained persistent for 4 weeks prior to reverting back to the original antibiotic susceptibility, prompting a suggestion of determining antibiograms for clinical S. aureus isolates subcultured from biofilms developed in vitro as well as planktonic subcultures prepared from the site of infection. While there was correlation of antibiotic resistance with biofilm formation confirming previous reports, this is the first time that persistence of the biofilm-associated antibiotic resistance by S. aureus as planktonic cells is reported. Among the two methods used for assessment of biofilm formation, the tissue culture plate (TCP) method revealed that almost all strains were strong or moderate biofilm producers whereas only 19/31 strains were biofilm producers using the Congo Red agar (CRA) method indicating the superiority of the TCP method in detecting biofilm producers. We also observed no association between biofilm formation and major capsule types. However, substantial, although not absolute, association of biofilm formation with PNAG was observed, warranting continued identification of additional surface-associated polysaccharide and/or protein antigens associated with biofilm formation for development of an effective vaccine against S. aureus infections regardless of capsular phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201200557DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
biofilm formation
20
biofilm producers
12
human methicillin-sensitive
8
methicillin-sensitive staphylococcus
8
staphylococcus aureus
8
mssa strains
8
aureus isolates
8
biofilm
8
tcp method
8

Similar Publications

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Modular Engineering of Lysostaphin with Significantly Improved Stability and Bioavailability for Treating MRSA Infections.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.

View Article and Find Full Text PDF

Pleural infections are common and associated with substantial healthcare costs, morbidity, and mortality. Accurate diagnosis remains challenging due to low culture positivity rates, frequent polymicrobial involvement, and non-specific diagnostic biomarkers. Here, we undertook a prospective study examining the feasibility and performance of molecular methods for diagnosing suspected pleural infection.

View Article and Find Full Text PDF

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

<b>Introduction:</b> Deep neck infections (DNI) are potentially life-threatening conditions. The infections are commonly polymicrobial, and develop as a result of oral cavity infections, tonsilitis, laryngitis, trauma, or malignancy. Timely diagnostics and management are essential to prevent severe complications such as airway obstruction, sepsis or mediastinitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!