Effect of ambient temperature and attachment method on surface temperature measurements.

Int J Biometeorol

Laboratory for Protection and Physiology, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland,

Published: July 2014

Accurate measurement of skin surface temperature is essential in both thermo-physiological and clinical applications. However, a literature review of the last two decades of physiological or clinical research revealed an inconsistency or a lack of information on how temperature sensors were attached to the skin surface. The purpose of this study was to systematically compare and quantify the performance of different commercially available temperature sensors and their typical attachment methods, and, secondly, to provide a time-efficient and reliable method for testing any sensor-tape combination. In conclusion, both the sensor type and the attachment method influenced the results of temperature measurements (both its absolute and relative dimensions). The sensor shape and the contact of its sensing area to the surface, as well as the conductance of the tape were the most important parameters to minimise the influence of environmental conditions on surface temperature measurement. These results suggest that temperature sensors and attachment methods for human subject and manikin trials should be selected carefully, with a systematic evaluation of the sensor-tape system under conditions of use, and emphasise the need to report these parameters in publications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-013-0669-4DOI Listing

Publication Analysis

Top Keywords

surface temperature
12
temperature sensors
12
attachment method
8
temperature measurements
8
skin surface
8
attachment methods
8
temperature
7
surface
5
ambient temperature
4
attachment
4

Similar Publications

Cost-Effective Synthesis of Carbazole-Based Nanoporous Organic Polymers for SO Capture.

ACS Appl Mater Interfaces

January 2025

International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.

Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.

View Article and Find Full Text PDF

Monitoring wetland cover changes and land surface temperatures using remote sensing and GIS in Göksu Delta.

Integr Environ Assess Manag

January 2025

Faculty of Fine Arts, Design and Architecture Department of Landscape Architecture, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.

Wetlands provide necessary ecosystem services, such as climate regulation and contribution to biodiversity at global and local scales, and they face spatial changes due to natural and anthropogenic factors. The degradation of the characteristic structure signals potential severe threats to biodiversity. This study aimed to monitor the long-term spatial changes of the Göksu Delta, a critical Ramsar site, using remote sensing techniques.

View Article and Find Full Text PDF

Solar-driven desalination technology is currently an important way to obtain freshwater resources. Significantly, porous materials are used as substrate materials of interface solar evaporator, and their specific impact of water transport property and thermal management during evaporation is worth exploring. In this paper, poly(vinyl alcohol) (PVA) sponges were prepared by a chemical foaming method, adjusted the PVA polymerization degree, and formaldehyde-hydroxyl ratio to regulate the pore size, and polypyrrole (PPy) was grown in situ on the surface skeleton of PVA sponge to construct a new interfacial solar evaporator (PPy/PVA) with different pore structures.

View Article and Find Full Text PDF

Electronically Nonadiabatic Quenching of Excited States of O by Collisions with O Atoms.

J Phys Chem A

January 2025

Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States.

The kinetics of electronically inelastic quenching of O(Δ) and O(Σ) by collisions with O(P) have been investigated using mixed quantum-classical trajectories governed by adiabatic potential energy surfaces and state couplings generated from a recently developed diabatic potential energy matrix (DPEM) for the 14 lowest-energy A' states of O. Using the coherent switching with decay of mixing (CSDM) method, dynamics calculations were performed both with 14 coupled electronic states and with 8 coupled electronical states, and similar results were obtained. The calculated thermal quenching rate coefficients are generally small, but they increase with temperature.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!