Leptin, a 167 amino acid peptide, is synthesized predominantly in the adipose tissues and plays a key role in the regulation of food intake and body weight. Recent studies indicate that leptin receptor is expressed with high levels in many brain regions that may regulate synaptic plasticity. Here we show that deprivation of rapid eye movement (REMD) sleep resulted in impairment of both cue and contextual fear memory. In parallel, surface expression of GluR1 was reduced in the amygdala. Intraperitoneal injection of leptin to the REMD mice rescued memory impairment and reversed surface GluR1 reduction. Using whole-cell recording to evaluate the synaptic function of the thalamus-lateral amygdala (LA) pathway, we found a decrease in frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) concomitant with reduced AMPA/NMDA ratios in the REMD mice. By contrast, paired-pulse facilitation (PPF) was increased. The effects of REMD on mEPSCs and AMPA/NMDA ratio could be reversed by leptin treatment, whereas on PPR it could not. Phosphatase and tensin homolog (PTEN), a dual protein/lipid phosphatase, down-regulates the effect of the PI-3 kinase pathway. Fear conditioning increased whereas REMD led to a decrease in the phosphorylated states of PTEN, Akt, and glycogen synthase kinase-3β (GSK3β), and the effects of REMD were reversed by leptin. These results suggest that both pre- and postsynaptic functions of the thalamus-LA pathway were altered by fear conditioning and REMD in opposite directions. Leptin treatment reversed REMD-induced memory deficits primarily by a postsynaptic action by restoring surface expression of GluR1 without affecting PPR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677081 | PMC |
http://dx.doi.org/10.1101/lm.030775.113 | DOI Listing |
PLoS One
January 2025
Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America.
Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna 1060, Austria.
Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
UCL Institute of Ophthalmology, University College London, London, UK.
Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.
Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.
Adv Healthc Mater
January 2025
Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, Shandong, 250014, China.
The porous structure is crucial in bone tissue engineering for promoting osseointegration. Among various structures, triply periodic minimal surfaces (TPMS) -Gyroid has been extensively studied due to its superior mechanical and biological properties. However, previous studies have given limited attention to the impact of unit cell size on the biological performance of scaffolds.
View Article and Find Full Text PDFEur J Immunol
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!