Structural and conformational, natural bond orbital (NBO) and nonlinear optical (NLO) analysis was performed, and (1)H and (13)C NMR chemical shifts values of 5-(2-Acetoxyethyl)-6-methylpyrimidin-2,4-dione [C9H12N2O4] in the ground state were calculated by using Density Functional Theory (DFT-B3LYP/6-311++G(d,p)) and Hartree-Fock (HF/6-311++G(d,p)) methods. The NMR data were calculated by means of the GIAO, CSGT, and IGAIM methods. In addition, the molecular frontier orbital energies, thermodynamic parameters (in the range of 200-700 K), molecular surfaces, Mulliken charges and atomic polar tensor-based charges were investigated. Besides, the analysis of all possible conformational of the title compound, a detailed potential energy curve for τ1(C8O3C10O4), τ2 (C8O3C10C11) and τ3 (C5C7C8O3) dihedral angles were performed in steps of 10° from 0° to 360°, and depicted to find the most stable form. Finally, the calculated HOMO and LUMO energies show that charge transfer occurs within the title compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2013.04.063 | DOI Listing |
Chemistry
December 2024
University of Pardubice: Univerzita Pardubice, Institute of Organic Chemistry and Technology, CZECHIA.
Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur 63100, Pakistan.
This study explores the nonlinear optical (NLO) and photophysical properties of newly designed naphthyridine derivatives by density functional theory (DFT). The first hyperpolarizability (β), a key indicator of NLO activity, varies significantly depending on the substituent groups. N-substituted compounds (IUB-N series) generally show lower β values, while compounds with electron donor/acceptor groups (IUB-P series) demonstrate a broader range, with IUB-A-02 achieving the highest β value of 16,362 a.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
In this report, the nonlinear optical (NLO) properties of titanium dioxide nanoparticles (TiO NPs) have been explored experimentally using femtosecond laser light along with the Z-scan approach. The synthesis of TiO NPs was carried out in distilled water through nanosecond second harmonic Nd:YAG laser ablation. Characterization of the TiO NPs colloids was conducted using UV-visible absorption spectroscopy, transmission electron microscopy (TEM), inductively coupled plasma (ICP), and energy-dispersive X-ray spectroscopy (EDX).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Dyestuff Technology (Currently named Department of Speciality Chemicals Technology), Institute of Chemical Technology, Mumbai, Maharashtra, India.
1,4-Dialkylamino -5,8-dihydroxy anthraquinones are investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) for their growth inhibitory potential. The frontier molecular orbital shows that the electron density is located at the anthraquinone core and at the substituents NH and OH in both HOMO as well as in LUMO. The chemical potential and electrophilicity index showed a direct relation, while hardness and hyperhardness had an inverse association with an energy gap.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Physics, Government College of Engineering, Srirangam, Tiruchirappalli-620012, Tamilnadu, India.
Continual attempts have been made to discover excellent nonlinear optical (NLO) materials. Here, we investigate the role of stacking interactions and van der Waals forces in the designed parallel stacked complexes M[9C]M (where M = Li, Na, K, Be, Mg, and Ca) using various quantum chemical and molecular dynamics methods. The thermodynamic stability of the present complexes is also revealed by the computed interaction energy, enthalpy of formation, and Gibbs free energy of formation (Δ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!