Listeria monocytogenes is a food-borne pathogen known to persist in food production environments, where it is able to attach and form biofilms, potentially contaminating food products ready for consumption. In this study the first step in the establishment of L. monocytogenes in a food-processing environment was examined, namely the initial adhesion to stainless steel under specific dynamic flow conditions. It was found that the intrinsic ability of L. monocytogenes to adhere to solid surfaces under flow conditions is dependent on nutrient availability. The addition of L-leucine to the growth medium altered the fatty acid composition of the L. monocytogenes cells and increased adhesion. The growth conditions resulting in the highest adhesion (growth medium with added glucose) had cells with the highest electron donating and lowest electron accepting properties, whereas growth conditions resulting in lowest adhesion (growth medium with added mannose) had cells with the lowest electron donating properties and highest electron accepting properties. The highest and lowest adhesion conditions correlated with differences in expression of cell surface protein of L. monocytogenes and among these the autolysin amidase (Ami). This study implies that food composition influences the adhesion of L. monocytogenes to solid surfaces during dynamic flow conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.04.014 | DOI Listing |
Mar Biotechnol (NY)
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
As the number of cerebral aneurysms treated with flow diverters continues to increase, it is important to understand what factors influence not only thrombus formation within the aneurysm cavity but also fibrin accumulation across the device and its associated disruption and blockage of the inflow stream. Both processes contribute to the eventual occlusion of the aneurysm or its continued patency and incomplete occlusion which may require future re-treatment. To investigate fibrin accumulation on flow diverters placed across the neck of cerebral aneurysms, a previously developed computational model that couples flow and fibrin dynamics is used in combination with experimental in vitro models of cerebral aneurysms treated with flow diverters.
View Article and Find Full Text PDFBiofouling
December 2024
Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
The goal of this study was to evaluate if a magnetic water treatment device could be used to mitigate biofilms in water systems. Magnetic treatment was applied to water upstream of a modified Robbins device in which biofilms were formed. Duration of magnetic treatment, system flow rate, and field strength were varied to assess the impacts on the biofilm.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address:
Nanocellulose stands out in numerous applications due to its excellent properties. Yet, achieving its preparation in a cost-effective, efficient, and environmentally benign manner remains challenging. This study introduces a green synthesis approach by employing a non-polluting solid acid, combined with a cellulase enzyme, for nanocellulose production.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry, University of Georgia, Athens, GA 30602. Electronic address:
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!