Use of genetically modified mice enhances our understanding of molecular mechanisms underlying several neurological disorders such as a spinal cord injury (SCI). Freehand manual control used to produce a laceration model of SCI creates inconsistent injuries often associated with a crush or contusion component and, therefore, a novel technique was developed. Our model of cervical laceration SCI has resolved inherent difficulties with the freehand method by incorporating 1) cervical vertebral stabilization by vertebral facet fixation, 2) enhanced spinal cord exposure, and 3) creation of a reproducible laceration of the spinal cord using an oscillating blade with an accuracy of ± 0.01 mm in depth without associated contusion. Compared to the standard methods of creating a SCI laceration such as freehand use of a scalpel or scissors, our method has produced a consistent lesion. This method is useful for studies on axonal regeneration of corticospinal, rubrospinal, and dorsal ascending tracts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679671PMC
http://dx.doi.org/10.3791/50030DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cervical laceration
8
laceration
5
controlled cervical
4
laceration injury
4
injury mice
4
mice genetically
4
genetically modified
4
modified mice
4
mice enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!