Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water.

J Environ Manage

Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, 06006 Badajoz, Spain.

Published: September 2013

Aqueous solutions of four pharmaceutical compounds, belonging to the group of emergent contaminants of water: atenolol (ATL), hydrochlorothiazide (HCT), ofloxacin (OFX) and trimethoprim (TMP), have been treated with different oxidation systems, mainly, photocatalytic oxidation, ozonation and photocatalytic ozonation. TiO2 has been used as semiconductor for photocatalytic reactions both in the presence of air, oxygen or ozone-oxygen gas mixtures. Black light lamps mainly emitting at 365 nm were the source of radiation. In all cases, the influence of some variables (concentrations of semiconductor, ozone gas and pharmaceuticals and pH) on the removal of pharmaceuticals, total polyphenol content (TPC) and total organic carbon (TOC) was investigated. A discussion on the possible routes of pharmaceutical and intermediates (as TPC and TOC) elimination has been developed. Thus, OFX TiO2/UVA degradation mechanism seems to develop through the participation of non-hydroxyl free radical species. Furthermore, the presence of OFX inhibits the formation of hydroxyl radicals in the photocatalytic process. The most effective processes were those involving ozone that lead to complete disappearance of parent compounds in less than 30 min for initial pharmaceutical concentrations lower than 2.5 mg L(-1). In the ozonation systems, regardless of the pH and the presence of TiO2, pharmaceuticals are degraded through their direct reaction with ozone. Photocatalytic ozonation was the most efficient process for TPC and TOC removals (≥ 80% and ≥60% elimination after 2 h of treatment, respectively) as well as in terms of the ozone consumption efficiency (1, 5.5 and 4 mol of ozone consumed per mol of TOC mineralized, at pH 4, 7 and 9, respectively). Weakly acid conditions (pH 4) resulted to be the most convenient ones for TPC and TOC removal by photocatalytic ozonation. This was likely due to formation of hydroxyl radicals through the ozonide generated at these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.04.024DOI Listing

Publication Analysis

Top Keywords

photocatalytic ozonation
16
tpc toc
12
photocatalytic
8
photocatalytic oxidation
8
oxidation ozonation
8
ozonation photocatalytic
8
pharmaceutical compounds
8
formation hydroxyl
8
hydroxyl radicals
8
ozonation
7

Similar Publications

Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-dimethylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants.

J Colloid Interface Sci

December 2024

State Key Laboratory of Photocatalysis On Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

The development of durable and highly efficient visible-light-driven photocatalysts is essential for the photocatalytic ozonation process towards degrading organic pollutants. This study presents CN-MA, a novel photocatalyst synthesized by grafting carbon nitride (CN) with single-atom Mn and 2-hydroxy-4,6-dimethylpyrimidine (HDMP) via one-step thermal polymerization. Experimental characterization and theoretical calculation results reveal that incorporating single-atom Mn and HDMP into CN alters the charge density distribution on the heptazine rings.

View Article and Find Full Text PDF

Application of advance oxidation processes for elimination of carbamazepine residues in soils.

J Environ Manage

December 2024

Research Group on Sustainability and Quality of Fruit and Vegetable Production. Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental. C/ Mayor s/n. La Alberca, 30150, Murcia. Spain. Electronic address:

The reuse of treated wastewater for agricultural irrigation has enlarged the risk of pharmaceutical compound accumulation in soil and their potential translocation to crops. Therefore, it is necessary to apply effective techniques to remove these pollutants from soil. This work was aimed to study the effectiveness of two advance oxidation processes (photocatalysis and ozonation) in the degradation of carbamazepine (CBZ) residues in three different soil matrices.

View Article and Find Full Text PDF

Microplastics (MPs) pollution has emerged as a global environmental concern due to its detrimental impacts on ecosystems. Conventional wastewater/water treatment methods are inadequate for MPs removal due to their diminutive size ranging from micrometers to nanometers. Advanced oxidation processes (AOPs) have gained attention as a promising green strategy for the efficient and safe elimination of MPs from aqueous systems.

View Article and Find Full Text PDF

The role of TiO and gCN bimetallic catalysts in boosting antibiotic resistance gene removal through photocatalyst assisted peroxone process.

Sci Rep

October 2024

Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk.

View Article and Find Full Text PDF

Carbonyl-amine condensation coupled ozonolysis of dipropylamine and styrene: Decay kinetics, reaction mechanism, secondary organic aerosol formation and cytotoxicity.

J Environ Sci (China)

March 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.

Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!