Fluid shear stress (FSS) from blood flow acting on the endothelium critically regulates vascular morphogenesis, blood pressure, and atherosclerosis. FSS applied to endothelial cells (ECs) triggers signaling events including opening of ion channels, activation of signaling pathways, and changes in gene expression. Elucidating how ECs sense flow is important for understanding both normal vascular function and disease. EC responses to FSS are mediated in part by a junctional mechanosensory complex consisting of VE-cadherin, PECAM-1, and VEGFR2. Previous work suggested that flow increases force on PECAM-1, which initiates signaling. Deletion of PECAM-1 blocks responses to flow in vitro and flow-dependent vascular remodeling in vivo. To understand this process, we developed and validated FRET-based tension sensors for VE-cadherin and PECAM-1 using our previously developed FRET tension biosensor. FRET measurements showed that in static culture, VE-cadherin in cell-cell junctions bears significant myosin-dependent tension, whereas there was no detectable tension on VE-cadherin outside of junctions. Onset of shear stress triggered a rapid (<30 s) decrease in tension across VE-cadherin, which paralleled a decrease in total cell-cell junctional tension. Flow triggered a simultaneous increase in tension across junctional PECAM-1, while nonjunctional PECAM-1 was unaffected. Tension on PECAM-1 was mediated by flow-stimulated association with vimentin. These data confirm the prediction that shear increases force on PECAM-1. However, they also argue against the current model of passive transfer of force through the cytoskeleton to the junctions, showing instead that flow triggers cytoskeletal remodeling, which alters forces across the junctional receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676707 | PMC |
http://dx.doi.org/10.1016/j.cub.2013.04.049 | DOI Listing |
In Vitro Model
April 2022
Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC G1V 0A6 Canada.
The mechanical stimulation applied on engineered vascular constructs in perfusion bioreactors has been shown to be beneficial for their maturation. The level of mechanical stimulation applied on these constructs depends on the flow parameters of the circuit (e.g.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.
Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.
View Article and Find Full Text PDFIn Vitro Model
February 2024
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Unlabelled: Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!