Dielectric and electrophoretic response of montmorillonite particles as function of ionic strength.

J Colloid Interface Sci

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Published: August 2013

Montmorillonite is a sheet-like clay mineral. The surface charge of the faces is always negative, whereas the surface charges of the edges depend on pH. In this study, pH is around 6.5 implying that the edges are slightly positive; however, the overall charge of the particle appears to be negative as the surface of the faces is 50 times larger than the edges. In the presence of an applied electric field, montmorillonite particles and their double layer will polarize. This polarization affects the electrokinetic response of the particles. In this article, we investigated the effect of ionic strength on the electrokinetic response of montmorillonite particles using the dielectric spectroscopy and electrophoretic mobility. The experimental dipole coefficient found by dielectric spectroscopy was compared to the semi-analytical formula presented by Chassagne [C. Chassagne, J. Colloid Interface Sci. 326 (2008)]. The amplitude of the dipole coefficient of montmorillonite particles increased and the relaxation frequency shifted to lower frequencies with decreasing ionic strength. This tendency is in qualitative agreement with the theoretical prediction. A better agreement between the experimental and theoretical amplitudes of the dipole coefficient and between the high-frequency experimental and theoretical mobilities was obtained when a Stern layer conductivity is introduced. The same values for the zeta potential and Stern layer conductivities were used in both measurement sets. The relaxation frequencies were not changed by addition of a Stern layer. This discrepancy between experimental and theoretical relaxation frequencies are due to the limitation of the theory that is not valid at low κa, as discussed in the conclusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2013.03.033DOI Listing

Publication Analysis

Top Keywords

montmorillonite particles
16
ionic strength
12
dipole coefficient
12
experimental theoretical
12
stern layer
12
response montmorillonite
8
negative surface
8
electrokinetic response
8
dielectric spectroscopy
8
relaxation frequencies
8

Similar Publications

From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications.

View Article and Find Full Text PDF

Performance Analysis of Pipe-Jacking Waste Soils Solidified with Quick Lime and Fly Ash under Balanced Earth Pressure Conditions.

ACS Omega

December 2024

China Second Metallurgy Group Corporation Limited, Baotou, Inner Mongolia 014031, China.

Article Synopsis
  • The pipe-jacking method is effective for constructing underground structures but generates a significant amount of waste soil that requires individual treatment, different from shield-tunneling waste soils.
  • In this study, pipe-jacking waste soils were enhanced using 7% polyacrylamide (PAM) and 12% sodium-based bentonite, leading to improved properties.
  • The solidification of the waste soils with quick lime and fly ash was tested with various concentrations, showing that it increased soil strength by up to 16% while enhancing structural compactness and stability through the effects of PAM and sodium-based bentonite.
View Article and Find Full Text PDF

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium.

View Article and Find Full Text PDF

Natural-derived porous nanocarriers for the delivery of essential oils.

Chin J Nat Med

December 2024

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China. Electronic address:

Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!