Enzymatic browning by polyphenoloxidase (PPO) affects food quality and taste in fruits and vegetables. Thus, the study was designed to reduce browning in apple juice by coumarin. The ethanolic extract of cinnamon was prepared and its coumarin content was quantitated by HPLC, using authentic coumarin (AC) as standard. The effect of cinnamon extract (CE) and AC on enzymatic browning, its time dependent effects, and the specific activity of PPO and peroxidase (POD) were studied in apple juice. The docking of coumarin with PPO and POD was also performed to elucidate its antibrowning mechanism. The CE (73%) and AC (82%) showed better reduction in browning, maintained its antibrowning effect at all time points, and significantly (p < 0.05) reduced the specific activity of PPO and POD when compared with controls. Coumarin showed strong interaction with binding pockets of PPO and POD, suggesting its potential use as inhibitor to enzyme mediated browning in apple juice.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf4009789DOI Listing

Publication Analysis

Top Keywords

apple juice
16
enzymatic browning
12
ppo pod
12
browning apple
8
specific activity
8
activity ppo
8
coumarin
6
browning
6
ppo
5
extraction quantitation
4

Similar Publications

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice.

Food Chem

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:

Article Synopsis
  • The study successfully developed antimicrobial peptides (AMPs) from quinoa using mixed-bacteria fermentation, which showed high antibacterial activity and stability.
  • Among the 9 peptide fractions analyzed, F1 was identified as the most effective in inhibiting bacterial growth in apple juice, particularly against Escherichia coli and Staphylococcus aureus.
  • The specific peptide AGAAPE demonstrated significant stability and resistance under various conditions, and its antimicrobial action was attributed to damaging bacterial membranes, making it a potential solution for preserving fresh juice.
View Article and Find Full Text PDF

The lactic fermentation of fruit and vegetable juices by well-characterised probiotics remains relatively underexplored. We have investigated the stability and impact of KABP051 fermentation on orange, apple, and peach juices by microbiological, physicochemical, and sensory evaluation means. For each fruit juice, three different samples were analysed: original fruit juice without probiotic as blank (B), fruit juice inoculated with 10 CFU/mL of probiotic without fermentation (P), and fruit juice inoculated with 10 CFU/mL of probiotic and fermented at 37 °C for 24 h (PF).

View Article and Find Full Text PDF

Apples are among the most important fruits worldwide and the most consumed fruit in Germany. Due to higher energy and personnel costs, domestic apples are more expensive and thus offer an incentive for mixing with foreign goods. Moreover, imported apples have a higher carbon footprint, which is an obstacle regarding sales in times of climate change.

View Article and Find Full Text PDF

Occurrence of contamination and the reduction and transfer of Alternaria toxins in apples during processing.

Food Res Int

January 2025

Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Article Synopsis
  • Alternaria spp. in apples can produce toxic secondary metabolites that threaten human and animal health, and this study explored the contamination levels and how these toxins are affected by processing methods.
  • Apples showed increased susceptibility to infection at 25 °C, producing six different toxins which did not spread beyond 4 cm from the infection site.
  • Processing methods like juicing and canning impacted toxin levels, with juice transfer rates lower than pomace, and most human exposure through apple products was well within recommended safety limits, suggesting a low dietary risk.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!