Temperate perennial woody plants use different environmental signals to coordinate their growth and development in relation to seasonal changes. Preliminary evidences suggest that, even during dormancy, plants maintain effective metabolic activities and molecular mechanisms ensuring them an eventual recording of mechanical loads during winter times. Despite their great importance for productivity and survival, plant biology investigations have poorly characterized the root growth cycle and its response to environmental stresses. In this study, we describe the proteomic changes occurring over the time in poplar root either in the absence or in response to a bending stress; corresponding expression of cell cycle regulator and auxin transporter genes was also evaluated by reverse transcription polymerase chain reaction analysis. Our results confirm previous evidences on the effect of the bending stress on the anticipation of root growth resumption, providing additional insights on a temporal modulation of various plant metabolic processes involved in dormancy break, growth resumption and stress response in the bent root; these events seem related to the differential compression and tension force distribution occurring over the plant taproot.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12072DOI Listing

Publication Analysis

Top Keywords

bending stress
12
response bending
8
root growth
8
growth resumption
8
root
5
temporal analysis
4
analysis poplar
4
poplar woody
4
woody root
4
response
4

Similar Publications

Finite element modeling of clavicle fracture fixations: a systematic scoping review.

Med Biol Eng Comput

January 2025

Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.

Finite element analysis has become indispensable for biomechanical research on clavicle fractures. This review summarized evidence regarding configurations and applications of finite element analysis in clavicle fracture fixation. Seventeen articles involving 22 clavicles were synthesized from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science databases.

View Article and Find Full Text PDF

Although the role of low-level laser therapy (LLLT) and human adipose-derived stem cells (hADSC) in accelerating diabetic wound healing has been proven, their synergistic effect is still debated. This study aimed to evaluate the individual and combined effects of LLLT and hADSC on wound healing and on biomechanical parameters in type 2 diabetic rabbits. In this experimental study, 40 rabbits with type 2 diabetes (induced by streptozotocin (STZ)) were included.

View Article and Find Full Text PDF

Amplification of Secondary Flow at the Initiation Site of Intracranial Sidewall Aneurysms.

Cardiovasc Eng Technol

January 2025

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.

Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Conventional approaches for the structural health monitoring of infrastructures often rely on physical sensors or targets attached to structural members, which require considerable preparation, maintenance, and operational effort, including continuous on-site adjustments. This paper presents an image-driven hybrid structural analysis technique that combines digital image processing (DIP) and regression analysis with a continuum point cloud method (CPCM) built on a particle-based strong formulation. Polynomial regressions capture the boundary shape change due to the structural loading and precisely identify the edge and corner coordinates of the deformed structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!