Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e. sMMO is only expressed at very low copper : biomass ratios, while pMMO expression increases as this ratio increases. Methanotrophs synthesize a chalkophore, methanobactin, for the binding and import of copper. Previous work suggested that methanobactin was formed from a polypeptide precursor. Here we report that deletion of the gene suspected to encode for this precursor, mbnA, in Methylosinus trichosporium OB3b, abolishes methanobactin production. Further, gene expression assays indicate that methanobactin, together with another polypeptide of previously unknown function, MmoD, play key roles in regulating expression of MMOs. Based on these data, we propose a general model explaining how expression of the MMO operons is regulated by copper, methanobactin and MmoD. The basis of the 'copper-switch' is MmoD, and methanobactin amplifies the magnitude of the switch. Bioinformatic analysis of bacterial genomes indicates that the production of methanobactin-like compounds is not confined to methanotrophs, suggesting that its use as a metal-binding agent and/or role in gene regulation may be widespread in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12150DOI Listing

Publication Analysis

Top Keywords

methanobactin mmod
8
methane monooxygenase
8
pmmo expression
8
expression mmos
8
methanobactin
7
expression
5
mmod work
4
work concert
4
concert 'copper-switch'
4
'copper-switch' methanotrophs
4

Similar Publications

MmoD regulates soluble methane monooxygenase and methanobactin production in OB3b.

Appl Environ Microbiol

December 2023

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Aerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity.

View Article and Find Full Text PDF

Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!