Aim: Liver fibrosis is the universal consequence of chronic liver diseases. Sustained hepatocyte injury initiates an inflammatory response, thereby activating hepatic stellate cells, the principal fibrogenic cells in the liver. Reactive oxygen species are involved in liver injury and are a promising target for treating liver fibrosis. Hydrogen water is reported to have potential as a therapeutic tool for reactive oxygen species-associated disorders. This study aimed to investigate the effects of hydrogen water on liver fibrogenesis and the mechanisms underlying these effects.

Methods: C57BL/6 mice were fed with hydrogen water or control water, and subjected to carbon tetrachloride, thioacetamide and bile duct ligation treatments to induce liver fibrosis. Hepatocytes and hepatic stellate cells were isolated from mice and cultured with or without hydrogen to test the effects of hydrogen on reactive oxygen species-induced hepatocyte injuries or hepatic stellate cell activation.

Results: Oral intake of hydrogen water significantly suppressed liver fibrogenesis in the carbon tetrachloride and thioacetamide models, but these effects were not seen in the bile duct ligation model. Treatment of isolated hepatocyte with 1 μg/mL antimycin A generated hydroxyl radicals. Culturing in the hydrogen-rich medium selectively suppressed the generation of hydroxyl radicals in hepatocytes and significantly suppressed hepatocyte death induced by antimycin A; however, it did not suppress hepatic stellate cell activation.

Conclusion: We conclude that hydrogen water protects hepatocytes from injury by scavenging hydroxyl radicals and thereby suppresses liver fibrogenesis in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/hepr.12165DOI Listing

Publication Analysis

Top Keywords

hydrogen water
24
liver fibrogenesis
16
hepatic stellate
16
liver fibrosis
12
reactive oxygen
12
hydroxyl radicals
12
liver
10
oral intake
8
hydrogen
8
intake hydrogen
8

Similar Publications

Development of a competent and stable electrocatalyst coupled with photovoltaic system for the generation of green hydrogen, can be a plausible answer to the existing energy crisis. Herein, we have developed Ru doped Ni0.95Se via hydrothermal method as a bifunctional catalyst for overall water splitting coupled with photovoltaic system.

View Article and Find Full Text PDF

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Weak H-Bond Interface Environment for Stable Aqueous Zinc Batteries.

ACS Nano

January 2025

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.

View Article and Find Full Text PDF

Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.

View Article and Find Full Text PDF

Household kitchen waste (HKW) is produced in large quantity and its management is difficult due to high moisture content and complex organic matter. Aerobic composting of HKW is an easy, efficient, cost-effective and eco-friendly method. This study is designed to achieve a zero-waste concept and to convert HKW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!