This study was undertaken to ascertain the extent of polymorphism in the C-terminal region of Plasmodium falciparum merozoite surface protein (MSP-1) from 119 malaria patients in Tak Province on the western border of Thailand, who were admitted to the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. P. falciparum infection was confirmed by microscopic examination of peripheral blood smears. Clinical manifestations were categorized into 2 groups: uncomplicated (94 cases) and complicated/severe (25 cases). A 1,040 basepair fragment of P. falciparum MSP-1 gene was compared with MSP-1 of reference strains retrieved from GenBank. The consensus sequences of MSP-1 block 16 showed it belonged to MAD20 genotype, which is the major allele of falciparum malaria from the western border of Thailand. MSP-1 block 16 amino acid fragment could be separated into 2 groups: similar and dissimilar to reference sequence. Four variations in MSP-1 block 16 were -1494K, D1510G, D1556N, and K1696I. MSP-1 block 16 diversity is not significantly associated with clinical manifestation although MAD 20 genotype is the predominant genotype in this area. The genetic data of MSP1 gene of faciparum malaria isolated from western Thai border contribute to the existing genetic database of Thai P. falciparum strain.
Download full-text PDF |
Source |
---|
PLoS One
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.
View Article and Find Full Text PDFPeerJ
July 2024
Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the MSP-1 Sal-I strain as viable serological biomarkers for exposure.
View Article and Find Full Text PDFJ Biol Chem
August 2024
Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, India. Electronic address:
Emerging Artemisinin (ART) resistance in Plasmodium falciparum (Pf) poses challenges for the discovery of novel drugs to tackle ART-resistant parasites. Concentrated efforts toward the ART resistance mechanism indicated a strong molecular link of ART resistance with upregulated expression of unfolded protein response pathways involving Prefoldins (PFDs). However, a complete characterization of PFDs as molecular players taking part in ART resistance mechanism, and discovery of small molecule inhibitors to block this process have not been identified to date.
View Article and Find Full Text PDFTrop Biomed
September 2023
Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysi.
In Malaysia presently, the main cause of human malaria is by the zoonotic monkey parasite Plasmodium knowlesi. A previous study has suggested that the P. knowlesi merozoite surface protein 1 (Pkmsp-1) block IV to be a suitable multiplicity of infection (MOI) genotyping marker for knowlesimalaria.
View Article and Find Full Text PDFParasitol Res
October 2023
Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
With limited up to date data from the Republic of Congo, the aim of this study was to investigate allelic polymorphism of merozoite surface protein-1 (msp-1) and merozoite surface protein-2 (msp-2). This will help assess the genetic diversity and multiplicity of Plasmodium falciparum infection (MOI), from uncomplicated malaria individuals living in Brazzaville. Between March and October 2021, a cross-sectional study was carried out at a health center in Madibou District located in the south of Brazzaville.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!