This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652471PMC
http://dx.doi.org/10.1016/j.surfcoat.2013.03.006DOI Listing

Publication Analysis

Top Keywords

aluminum oxide
20
oxide layers
12
device structures
12
amorphous aluminum
8
protective layers
8
aluminum
6
oxide
5
layers
5
device
5
development pinhole-free
4

Similar Publications

3D Vertical Ferroelectric Capacitors with Excellent Scalability.

Nano Lett

January 2025

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.

Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.

View Article and Find Full Text PDF

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

Objective: This study aims to evaluate extrinsic tooth stain removal and whitening efficacy of two experimental dentifrices containing (i) 5% sodium tripolyphosphate (STP)/1% micronized alumina or (ii) 5% STP/1% micronized alumina with abrasive silica (ED2) compared to a regular fluoride dentifrice (RFD) following 8 weeks of use.

Materials And Methods: This was a single-center, randomized, controlled, blind, three-arm, stratified, parallel-group study. Eligible participants underwent clinical assessment of stain on the facial/lingual surfaces of maxillary and mandibular teeth using the modified Lobene stain index (MLSI), and shade of the facial surfaces of the central and lateral maxillary incisors using the VITA Bleachedguide 3D-Master (VITA) shade guide.

View Article and Find Full Text PDF

Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.

J Mater Sci Mater Med

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!