Ionic liquids (ILs) are novel solvents that display a number of unique properties, such as negligible vapor pressure, thermal stability (even at high temperatures), favorable viscosity, and miscibility with water and organic solvents. These properties make them attractive alternatives to environmentally unfriendly solvents that produce volatile organic compounds. In this article, a critical review of state-of-the-art developments in the use of ILs for the separation and preconcentration of bioanalytes in biological samples is presented. Special attention is paid to the determination of various organic and inorganic analytes--including contaminants (e.g., pesticides, nicotine, opioids, gold, arsenic, lead, etc.) and functional biomolecules (e.g., testosterone, vitamin B12, hemoglobin)--in urine, blood, saliva, hair, and nail samples. A brief introduction to modern microextraction techniques based on ILs, such as dispersive liquid-liquid microextraction (DLLME) and single-drop microextraction (SDME), is provided. A comparison of IL-based methods in terms of their limits of detection and environmental compatibilities is also made. Finally, critical issues and challenges that have arisen from the use of ILs in separation and preconcentration techniques are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-013-6950-x | DOI Listing |
Electrophoresis
January 2025
Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia.
Advancements in food technology have increased the need for thorough analysis to ensure food safety, quality, and compliance with regulatory requirements. Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful tool in food analysis due to its high separation efficiency, low sample consumption, and ability to handle complex matrices. However, challenges such as the use of volatile running buffers and maintaining the stability of the electrical circuit connecting the CE and MS systems have been addressed through advancements in interface designs, such as sheathless systems and optimized sheath-liquid compositions.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Mechanical Engineering, Stanford University, 488 Escondido Mall, Stanford, CA, 94305, USA. Electronic address:
Background: Isotachophoresis (ITP) is a well-established electrokinetic method for separation and preconcentration of analytes. Several simulation tools for ITP have been published, but their use for experimental design is limited by the computational time for a single run and/or by the number of conditions that can be investigated per simulation run. A large fraction of the existing solvers also do not account for ionic strength effects, which can influence whether an analyte focuses in ITP.
View Article and Find Full Text PDFMicroorganisms
December 2024
Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain.
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .
View Article and Find Full Text PDFACS Sens
January 2025
Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
Exhaled breath contains trace levels of volatile organic compounds (VOCs) that can reveal information about metabolic processes or pathogens in the body. These molecules can be used for medical diagnosis, but capturing and accurately measuring them is a significant challenge in chemical separations. A highly selective nanoporous sorbent can be used to capture target molecules from a breath sample and preconcentrate them for use in a detector.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!