Thermoelectric properties of Zn-doped Ca5In2Sb6.

Dalton Trans

Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.

Published: July 2013

The Zintl compound Ca5Al2Sb6 is a promising thermoelectric material with exceptionally low lattice thermal conductivity resulting from its complex crystal structure. In common with the Al analogue, Ca5In2Sb6 is naturally an intrinsic semiconductor with a low p-type carrier concentration. Here, we improve the thermoelectric properties of Ca5In2Sb6 by substituting Zn(2+) on the In(3+) site. With increasing Zn substitution, the Ca5In(2-x)Zn(x)Sb6 system exhibits increased p-type carrier concentration and a resulting transition from non-degenerate to degenerate semiconducting behavior. A single parabolic band model was used to estimate an effective mass in Ca5In2Sb6 of m* = 2m(e), which is comparable to the Al analogue, in good agreement with density functional calculations. Doping with Zn enables rational optimization of the electronic transport properties and increased zT in accordance with a single parabolic band model. The maximum figure of merit obtained in optimally Zn-doped Ca5In2Sb6 is 0.7 at 1000 K. While undoped Ca5In2Sb6 has both improved electronic mobility and reduced lattice thermal conductivity relative to Ca5Al2Sb6, these benefits did not dramatically improve the Zn-doped samples, leading to only a modest increase in zT relative to optimally doped Ca5Al2Sb6.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt50428jDOI Listing

Publication Analysis

Top Keywords

thermoelectric properties
8
zn-doped ca5in2sb6
8
lattice thermal
8
thermal conductivity
8
p-type carrier
8
carrier concentration
8
single parabolic
8
parabolic band
8
band model
8
ca5in2sb6
6

Similar Publications

Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.

View Article and Find Full Text PDF

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

DFT study of the binary intermetallic compound NdMn in different polytypic phases.

J Mol Model

January 2025

Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.

Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.

View Article and Find Full Text PDF

Wearable thermoelectric generator (TEG) can collect human body heat and convert it into electrical energy, achieving self-powering of the device and thus becoming a hot research topic at present. By utilization of three-dimensional spiral thin-film thermoelectric structures and passive radiation cooling methods, the heat transfer area can be increased and power generation can be enhanced. In order to study the effect of outdoor radiation cooling on the thermoelectric performance of spiral heating, as well as the TEG performance output under different external environments and circuit loads, this paper proposes a new three-dimensional coupled numerical model of the spiral thermoelectric wristband system with multiple physical fields.

View Article and Find Full Text PDF

Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!