Background: Cardiomyocyte-specific overexpression of human membrane-associated stem cell factor (hSCF) improves cardiac function post-myocardial infarction. However, whether hSCF overexpression protects the heart from ischemia and reperfusion (I/R) injury is unknown. We aimed to investigate the effects of cardiomyocyte-specific overexpression of hSCF on cardiac injury after acute myocardial I/R and related cellular and molecular signaling mechanisms.
Methods And Results: Wild-type (WT) and hSCF/tetracycline transactivator (tTA) transgenic mice (hSCF/tTA) were subjected to myocardial ischemia for 45 min followed by 3 h of reperfusion. Infarct size and myocardial apoptosis were decreased in hSCF/tTA compared to WT mice (P<0.05). Furthermore, these cardioprotective effects in the hSCF/tTA mice were abrogated by doxycycline, which turned off hSCF overexpression, and by a PI3 kinase inhibitor LY294002. Myocardial expression of insulin-like growth factor (IGF)-1 and hepatocyte growth factor (HGF), which are upstream activators of Akt signaling, was significantly increased in hSCF/tTA compared to WT mice after I/R (P<0.05), and was associated with higher number of c-kit(+) cardiac stem cells (CSCs) (P<0.05). Inhibition of c-kit signaling by ACK2 treatment abolished these protective effects in hSCF/tTA mice.
Conclusions: Cardiomyocyte-specific overexpression of hSCF protects the heart from I/R injury. The cardioprotective effects of hSCF overexpression are mediated by increased c-kit(+) CSCs, enhanced growth factor expression and activation of Akt signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2013.04.165 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.
Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Division of Cardiovascular Science, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK.
Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.
View Article and Find Full Text PDFElife
January 2025
Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.
Dystrophin is a critical interacting protein of Nav1.5 that determines its membrane anchoring in cardiomyocytes. Long noncoding RNAs (lncRNAs) are involved in the regulation of cardiac ion channels, while their influence on sodium channels remains unexplored.
View Article and Find Full Text PDFCirc Res
December 2024
Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill. (W.S., J.P.-L., W.G.W., W.F.M., F.L.C.).
Background: Males and females exhibit distinct anatomic and functional characteristics of the heart, predisposing them to specific disease states.
Methods: We identified microRNA (miRNAs/miR) with sex-differential expression in mouse hearts.
Results: Four conserved miRNAs are present in a single locus on the X-chromosome and are expressed at higher levels in females than males.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!