Peroxynitrite (ONOO(-)) constitutes a major cytotoxic agent, implicated in a host of pathophysiological conditions, thereby stimulating a tremendous interest in evaluating its role as an oxidant in vivo. Some of the detection methods for peroxynitrite include oxidation of fluorescent probes, EPR spectroscopy, chemiluminescence, immunohistochemistry, and probe nitration; however, these are more difficult to apply for real-time quantification due to their inherent complexity. The electrochemical detection of peroxynitrite is a simpler and more convenient technique, but the best of our knowledge there are only few papers to date studying its electrochemical signature, or reporting amperometric microsensors for peroxynitrite. Recently, we have reported the use of layered composite films of poly(3,4-ethylenedioxythiophene) (PEDOT) and hemin (iron protoporphyrin IX) as a platform for amperometric measurement of peroxynitrite. The main goal herein is to investigate the intrinsic catalytic role of hemin electropolymerized thin films on carbon electrodes in oxidative detection of peroxynitrite. The electrocatalytic oxidation of peroxynitrite is characterized by cyclic voltammetry. The catalytic current increased as a function of peroxynitrite's concentration, with a peak potential shifting positively with peroxynitrite's concentration. The catalytic efficiency decreased as the scan rate increased, and the peak potential of the catalytic oxidation was found to depend on pH. We show that optimized hemin-functionalized carbon electrodes can be used as simple platforms for peroxinitrite detection and quantification. We report dose-response amperometry as an electroanalytical determination of this analyte on hemin films and we contrast the intrinsic hemin catalytic role with its performance in the case of the PEDOT-hemin as a composite matrix. Finally, we include some work extending the use of simple hemin films for peroxynitrite determination on carbon microfiber electrodes in a flow system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2013.03.057DOI Listing

Publication Analysis

Top Keywords

detection peroxynitrite
12
peroxynitrite
8
catalytic role
8
carbon electrodes
8
peroxynitrite's concentration
8
peak potential
8
hemin films
8
detection
5
hemin
5
catalytic
5

Similar Publications

Real-time monitoring of ONOO⁻ in cerebral ischemia-reperfusion injury mouse models using a hydrazine-based NIR fluorescent probe.

Redox Biol

January 2025

Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China. Electronic address:

Accurate and selective techniques for visualizing endogenous peroxynitrite (ONOO) in cerebral ischemia-reperfusion injury (CIRI) models are essential for understanding its complex pathological processes. Here, we introduced a longwave fluorescent probe TJO for detecting ONOO rapidly and sensitively, with a low detection limit of 91 nM. Furthermore, TJO exhibits excellent fluorescence imaging capabilities, enabling detailed visualization of ONOO⁻ in CIRI mice model.

View Article and Find Full Text PDF

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

Ulcerative colitis (UC), often referred to as "green cancer", is a chronic inflammatory bowel disease with an unclear etiology, closely associated with the imbalance of hydrogen sulfide (HS) and peroxynitrite (ONOO). HS exhibits anti-inflammatory effects at physiological levels, but excessive concentrations can compromise the intestinal barrier, while ONOO aggravates inflammation. To facilitate the molecular-level monitoring of these compounds in UC, we developed a novel fluorescent probe, , capable of simultaneously detecting HS and ONOO via distinct fluorescent channels in a cascade mode.

View Article and Find Full Text PDF

Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play fundamental roles in various biological and chemical processes in nature and industries, including cell signaling, disease development and aging, immune defenses, environmental remediation, pharmaceutical syntheses, metal corrosion, energy production, etc. As such, their detection is of paramount importance, but their accurate identification and quantification are technically challenging due to their transient nature with short lifetimes and low steady-state concentrations. As a highly sensitive and selective analytical technique, surface-enhanced Raman spectroscopy (SERS) is promising for detecting ROS in real-time, enabling in situ monitoring of ROS-involved electrochemical and biochemical events with exceptional resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!