Deferoxamine blocks death induced by glutathione depletion in PC 12 cells.

Neurotoxicology

INSERM U 919, UMR CNRS 6232 'CINAPS', Centre Cyceron, BP 5229, F-14074 Caen Cedex, France.

Published: July 2013

The purpose of the present work was to investigate the mechanisms by which glutathione depletion induced by treatment with buthionine sulfoximine (BSO) led within 24-30 h to PC 12 cells apoptosis. Our results showed that treatment by relatively low concentrations (10-30 μM) of deferoxamine (DFx), a natural iron-specific chelator, almost completely shielded the cells from BSO-induced toxicity and that DFx still remained protective when added up to 9-12h after BSO treatment. On the other hand, phosphopeptides derived from milk casein and known to carry iron across cell membranes, markedly potentiated the toxic action of BSO when loaded with iron but were ineffective in sodium form. Kept for 24 h in serum-free medium, the cells underwent a decrease in glutathione content after BSO treatment, but remained viable. However, these BSO-pre-treated cells showed a rapid (90-120 min) decrease in cell viability when incubated with low doses of iron, whereas a great proportion of them remained viable in the presence of higher concentrations of copper and zinc. We also observed in PC 12 cells an early (4-8 h) and transient increase in the expression of ferritin subunits following BSO addition. Taken together these results suggest that BSO-induced glutathione depletion leads to an alteration of cellular iron homeostasis, which may contribute to its toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2013.04.013DOI Listing

Publication Analysis

Top Keywords

glutathione depletion
12
bso treatment
8
remained viable
8
cells
6
bso
5
deferoxamine blocks
4
blocks death
4
death induced
4
glutathione
4
induced glutathione
4

Similar Publications

Tailored biomimetic nanoreactor improves glioma chemodynamic treatment via triple glutathione depletion and prompt acidity elevation.

Mater Today Bio

February 2025

Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.

Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients.

View Article and Find Full Text PDF

Tumor microenvironment triggered iron-based metal organic frameworks for magnetic resonance imaging and photodynamic-enhanced ferroptosis therapy.

J Colloid Interface Sci

January 2025

School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China. Electronic address:

Photodynamic therapy (PDT) primarily relies on the generation of reactive oxygen species (ROS) to eliminate tumor cells. However, the elevated levels of glutathione (GSH) within tumor cells can limit the efficacy of PDT, posing a challenge to achieve complete tumor eradication. Herein, a porous iron-based metal-organic frameworks (PEG-Fe-MOFs) nanoplatform was developed for the combined application of PDT and ferroptosis in cancer treatment.

View Article and Find Full Text PDF

Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress.

Theriogenology

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China. Electronic address:

Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!