Download full-text PDF

Source
http://dx.doi.org/10.1111/ddg.12110DOI Listing

Publication Analysis

Top Keywords

pulsed dye
4
dye laser
4
laser fpdl
4
fpdl treatment
4
treatment plantar
4
plantar verruca
4
verruca vulgaris
4
vulgaris vivo
4
vivo monitoring
4
monitoring therapy
4

Similar Publications

Bio-inspired porous adsorbents with lotus-leaf-like hierarchical structures and mussel adhesive surfaces for high-capacity removal of toxic dyes.

Environ Res

January 2025

College of Chemistry, Liaoning University, Shenyang 110036, P. R. China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, P. R. China. Electronic address:

Basic dyes are highly toxic and have adverse effects on humans such as accelerated heart rate, shock, cyanosis, and tissue necrosis upon ingestion or skin contact. Efficient removal of basic dye pollutants from wastewater is therefore essential for the protection of the environment and human health. Biomolecules exhibit excellent dye removal performance in terms of removal capacity, selectivity, and rate.

View Article and Find Full Text PDF

Pulsed Ultrasound-Mediated Drug Delivery Enhancement Through Human Sclera.

Transl Vis Sci Technol

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Purpose: The purpose of this study was to characterize whether pulsed ultrasound (PUS) affects transscleral drug delivery.

Methods: Fluorescein sodium (NaF, 376 Da) and fluorescein isothiocyanate-conjugated dextran 40 (FD-40, 40 kDa) were used as model drugs. Human sclera grafts were placed in modified Franz diffusion cells and were treated by PUS (1 megahertz [MHz], 0.

View Article and Find Full Text PDF

High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm and a thickness of ∼600 μm.

View Article and Find Full Text PDF

Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells.

View Article and Find Full Text PDF

Successful Multi-Modal Laser Intervention and Histopathological Evaluation of Multiple Glomangiomas.

Lasers Surg Med

December 2024

Department of Dermatology, Veterans Health Administration, San Antonio, Texas, USA.

Objectives: Glomangiomas are benign vascular malformations that exist within the spectrum of glomuvenous malformations which consist of varying amounts of glomus cells, vascular spaces, and smooth muscle. Glomangiomas are often treated due to associated pain, particularly when located on pressure areas such as the back or extensor surfaces, which can cause difficulty with certain activities and occupational functions. Histologically glomangiomas consist of prominent dilated vascular spaces lined by glomus cells typically situated in the deep-dermis to subcutaneous fat which limits treatment to modalities capable of reaching the depth of the tumor including excision, sclerotherapy, and laser therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!