We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.177601 | DOI Listing |
IUCrJ
January 2025
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
After the publication of "Direct formation of hard-magnetic tetrataenite in bulk alloy castings" Ivanov et al., Advanced Science 10 (2022) 2204315, the authors identified a potential misinterpretation of the experimental data. Further work confirms that the original conclusions cannot be supported, and accordingly the paper is retracted.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
J Synchrotron Radiat
January 2025
S.RI.Tech, Viale Del Lavoro 42A, 35010 Vigonza, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!