Diborane (B(2)H(6)), a high energy density material, was believed to be stable in a wide P, T interval. A systematic investigation of the B-H system using the ab initio variable-composition evolutionary simulations shows that boron monohydride (BH) is thermodynamically stable and can coexist with solid B, H(2), and B(2)H(6) in a wide pressure range above 50 GPa. B(2)H(6) becomes unstable and decomposes into the Ibam phase of BH and H(2) (C2/c) at 153 GPa. The semiconducting layered Ibam structure of BH at 168 GPa transforms into a metallic phase with space group P6/mmm and a 3D topology with strong B-B and B-H covalent bonds. The Ibam-P6/mmm transformation pathway suggests the possibility of obtaining the metastable Pbcm phase on cold decompression of the P6/mmm phase. The electron-phonon coupling calculations indicate that P6/mmm-BH is a phonon-mediated superconductor with a critical temperature of superconductivity (T(c)) of 14.1-21.4 K at 175 GPa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.165504 | DOI Listing |
Inorg Chem
January 2025
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.
The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.
We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7 GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering, Queen's University, 99 University Ave, Kingston K7L3N5, ON, Canada. Electronic address:
The degradation of permafrost due to climate change has significant effects on the hydrological processes and ecosystems in arctic and subarctic regions. Thermokarst lakes, formed from permafrost thaw and subsidence, play a crucial role in this process by influencing heat storage and exchange and accelerating the thaw rate of the surrounding permafrost. A direct effect of these lakes is the formation of taliks, perennially thawed soil.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Water Science, Beijing Normal University, Beijing, 100875, PR China.
Microorganisms play a fundamental role in driving biogeochemical functions within rivers. Theoretically, the directional flowing nature of river contributes to the continuous downstream change pattern of microbial communities. This continuity is anticipated to be influenced by human activities as anthropogenic materials lead to the mixing of environmental substances and their resident microorganisms with local communities.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
School of Physics Science & Information Technology, Liaocheng University, Liaocheng 252000, China.
Bismuth-based perovskite materials have attracted extensive attention due to their low toxicity and excellent optoelectronic properties. Herein, this investigation delves systematically into the influence of pressure on the structural stability, band gap evolution, and electrical transport properties of RbBiI. With the pressure increase, the band gap of the specimen gradually diminishes, attaining an optimal semiconductor band gap of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!