We have experimentally observed the emergence of spontaneous antiferromagnetic spatial order in a sodium spinor Bose-Einstein condensate that was quenched through a magnetic phase transition. For negative values of the quadratic Zeeman shift, a gas initially prepared in the F=1, m(F)=0 state collapsed into a dynamically evolving superposition of all three spin projections, m(F)=0, ±1. The quench gave rise to rich, nonequilibrium behavior where both nematic and magnetic spin waves were generated. We characterized the spatiotemporal evolution through two particle correlations between atoms in each pair of spin states. These revealed dramatic differences between the dynamics of the spin correlations and those of the spin populations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.165301DOI Listing

Publication Analysis

Top Keywords

antiferromagnetic spatial
8
spin
5
spatial ordering
4
ordering quenched
4
quenched one-dimensional
4
one-dimensional spinor
4
spinor gas
4
gas experimentally
4
experimentally observed
4
observed emergence
4

Similar Publications

Quantum magnetometry of transient signals with a time resolution of 1.1 nanoseconds.

Nat Commun

January 2025

Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093, Zürich, Switzerland.

Quantum magnetometers based on spin defects in solids enable sensitive imaging of various magnetic phenomena, such as ferro- and antiferromagnetism, superconductivity, and current-induced fields. Existing protocols primarily focus on static fields or narrow-band dynamical signals, and are optimized for high sensitivity rather than fast time resolution. Here, we report detection of fast signal transients, providing a perspective for investigating the rich dynamics of magnetic systems.

View Article and Find Full Text PDF

Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.

View Article and Find Full Text PDF

Skin Effect of Nonlinear Optical Responses in Antiferromagnets.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Nonlinear optics plays important roles in the research of fundamental physics and the applications of high-performance optoelectronic devices. The bulk nonlinear optical responses arise from the uniform light absorption in noncentrosymmetric crystals, and hence are usually considered to be the collective phenomena of all atoms. Here we show, in contrast to this common expectation, the nonlinear optical responses in antiferromagnets can be selectively accumulated near the surfaces, representing a skin effect.

View Article and Find Full Text PDF

Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices.

Acc Chem Res

January 2025

Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany.

ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice.

View Article and Find Full Text PDF

Nanoscale detection and control of the magnetic order underpins a spectrum of condensed-matter research and device functionalities involving magnetism. The key principle involved is the breaking of time-reversal symmetry, which in ferromagnets is generated by an internal magnetization. However, the presence of a net magnetization limits device scalability and compatibility with phases, such as superconductors and topological insulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!