We have observed single photon double K-shell photoionization in the C(2)H(2n) (n=1-3) hydrocarbon sequence and in N(2) and CO, using synchrotron radiation and electron coincidence spectroscopy. Our previous observations of the K(-2) process in these molecules are extended by the observations of a single photon double photoionization with one core hole created at each of the two neighboring atoms in the molecule (K(-1)K(-1) process). In the C(2)H(2n) sequence, the spectroscopy of K(-1)K(-1) states is much more sensitive to the bond length than conventional electron spectroscopy for chemical analysis spectroscopy based on single K-shell ionization. The cross section variation for single photon K(-1)K(-1) double core ionization in the C(2)H(2n) sequence and in the isoelectronic C(2)H(2n), N(2) and CO molecules validates a knock-out mechanism in which a primary ionized 1s photoelectron ejects another 1s electron of the neighbor atom. The specific Auger decay from such states is clearly observed in the CO case.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.163001DOI Listing

Publication Analysis

Top Keywords

single photon
16
k-1k-1 double
8
double core
8
core ionization
8
ionization c2h2n
8
c2h2n n=1-3
8
chemical analysis
8
photon double
8
c2h2n sequence
8
single
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!