Unifying autocatalytic and zeroth-order branching models for growing actin networks.

Phys Rev E Stat Nonlin Soft Matter Phys

Bioquant and Institute for Theoretical Physics, University of Heidelberg, Germany.

Published: April 2013

The directed polymerization of actin networks is an essential element of many biological processes, including cell migration. Different theoretical models considering the interplay between the underlying processes of polymerization, capping, and branching have resulted in conflicting predictions. One of the main reasons for this discrepancy is the assumption of a branching reaction that is either first order (autocatalytic) or zeroth order in the number of existing filaments. Here we introduce a unifying framework from which the two established scenarios emerge as limiting cases for low and high filament numbers. A smooth transition between the two cases is found at intermediate conditions. We also derive a threshold for the capping rate above which autocatalytic growth is predicted at sufficiently low filament number. Below the threshold, zeroth-order characteristics are predicted to dominate the dynamics of the network for all accessible filament numbers. Together, these mechanisms allow cells to grow stable actin networks over a large range of different conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.87.040701DOI Listing

Publication Analysis

Top Keywords

actin networks
12
filament numbers
8
unifying autocatalytic
4
autocatalytic zeroth-order
4
zeroth-order branching
4
branching models
4
models growing
4
growing actin
4
networks directed
4
directed polymerization
4

Similar Publications

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Here, we apply SuperResNET network analysis of dSTORM single-molecule localization microscopy (SMLM) to determine how the clathrin endocytosis inhibitors pitstop 2, dynasore and Latrunculin A alter the morphology of clathrin-coated pits. SuperResNET analysis of HeLa and Cos7 cells identifies: small oligomers (Class I); pits and vesicles (Class II); and larger clusters corresponding to fused pits or clathrin plaques (Class III). Pitstop 2 and dynasore induce distinct homogeneous populations of Class II structures in HeLa cells suggesting that they arrest endocytosis at different stages.

View Article and Find Full Text PDF

The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes.

View Article and Find Full Text PDF

Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression.

View Article and Find Full Text PDF

Anti-Scar Effects of Micropatterned Hydrogel after Glaucoma Drainage Device Implantation.

Research (Wash D C)

January 2025

Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.

Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!