Biochemical features of a catalytic antibody light chain, 22F6, prepared from human lymphocytes.

J Biol Chem

Research Center for Applied Medical Engineering, Oita University, Dan-noharu 700, Oita-shi, Oita 870-1192, Japan.

Published: July 2013

Human antibody light chains belonging to subgroup II of germ line genes were amplified by a seminested PCR technique using B-lymphocytes taken from a human adult infected with influenza virus. Each gene of the human light chains was transferred into the Escherichia coli system. The recovered light chain was highly purified using a two-step purification system. Light chain 22F6 showed interesting catalytic features. The light chain cleaved a peptide bond of synthetic peptidyl-4-methyl-coumaryl-7-amide (MCA) substrates, such as QAR-MCA and EAR-MCA, indicating amidase activity. It also hydrolyzed a phosphodiester bond of both DNA and RNA. From the analysis of amino acid sequences and molecular modeling, the 22F6 light chain possesses two kinds of active sites as amidase and nuclease in close distances. The 22F6 catalytic light chain could suppress the infection of influenza virus type A (H1N1) of Madin-Darby canine kidney cells in an in vitro assay. In addition, the catalytic light chain clearly inhibited the infection of the influenza virus of BALB/c mice via nasal administration in an in vivo assay. In the experiment, the titer in the serum of the mice coinfected with the 22F6 light chain and H1N1 virus became considerably lowered compared with that of 22F6-non-coinfected mice. Note that the catalytic light chain was prepared from human peripheral lymphocyte and plays an important role in preventing infection by influenza virus. Considering the fact that the human light chain did not show any acute toxicity for mice, our procedure developed in this study must be unique and noteworthy for developing new drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707657PMC
http://dx.doi.org/10.1074/jbc.M113.454579DOI Listing

Publication Analysis

Top Keywords

light chain
40
influenza virus
16
light
12
catalytic light
12
infection influenza
12
chain
10
antibody light
8
chain 22f6
8
prepared human
8
light chains
8

Similar Publications

Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis.

Nanomicro Lett

January 2025

Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.

Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disease of the elderly. Patients suffer from progressive motor and non-motor symptoms. Further, PD patients often present geriatric features like multimorbidity and polypharmacotherapy.

View Article and Find Full Text PDF

Introduction And Hypothesis: The relationship between autophagy and pelvic organ prolapse (POP) remains unknown. The aim of this novel experimental study, utilizing tissue samples derived from women undergoing gynecological surgery, is to investigate the role of autophagy in mitigating collagen degradation in human vaginal fibroblasts induced by oxidative stress, with particular emphasis on its implications in the pathogenesis of POP. Exploring the role of autophagy in protecting against collagen degradation and cellular senescence in human vaginal fibroblasts under oxidative stress may offer new insights into therapeutic strategies for conditions such as POP.

View Article and Find Full Text PDF

Identification of novel rodent and shrew orthohepeviruses sheds light on hepatitis E virus evolution.

Zool Res

January 2025

Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China. E-mail:

The family has seen an explosive expansion in its host range in recent years, yet the evolutionary trajectory of this zoonotic pathogen remains largely unknown. The emergence of rat hepatitis E virus (HEV) has introduced a new public health threat due to its potential for zoonotic transmission. This study investigated 2 464 wild small mammals spanning four animal orders, eight families, 21 genera, and 37 species in Yunnan Province, China.

View Article and Find Full Text PDF

Background: Serum neurofilament light chain (sNfL) is a biomarker for neuro-axonal injury.

Objectives: To assess sNfL's utility as a diagnostic marker for Lyme neuroborreliosis (LNB).

Methods: We compared serum and CSF NfL levels in LNB patients and age-matched controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!