We quantitatively analyzed the contrast degradation and blur of 20-nm gold nanoparticles adsorbed on the top of amorphous silicon films of thicknesses of 0.54, 1.09, 1.63 and 2.2 μm in bright-field transmission electron microscope (TEM) images taken at accelerating voltages of 0.5, 1, 2 and 3 MeV. The thickness dependence of the transmission was well explained and consistent with our calculations. The blur function, derived by assuming that the TEM image of a thick specimen can be reproduced by convolving the TEM image of a very thin specimen with it, was found to be expressed by a two-dimensional Lorentzian function. Considering the two characteristics of the Lorentzian function, a sharp peak around the center and a long tail, we concluded that, for TEM observations of thick specimens, the image contrast is degraded predominantly by inelastic scattering and the image is blurred predominantly by multiple elastic scattering.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dft031DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
amorphous silicon
8
silicon films
8
transmission electron
8
tem image
8
lorentzian function
8
lorentzian-like image
4
image blur
4
blur gold
4
nanoparticles thick
4

Similar Publications

Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres.

Int J Biol Macromol

January 2025

Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe.

Talanta

December 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:

Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.

View Article and Find Full Text PDF

A SiO@Au@Polyaniline (SiO@Au@PAN) system has been successfully fabricated leveraging the synergistic effects of gold nanoparticles (AuNPs) to realize enhanced photothermal performance. The SiO@Au@PAN exhibited strong near-infrared (NIR) absorbance, excellent photothermal conversion efficiency, good dispersibility, and outstanding photostability. The SiO nanospheres as the template provided numerous binding sites for coating of AuNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!