Apoptosis can occur throughout the life span of osteoblasts (OBs), beginning from the early stages of differentiation and continuing throughout all stages of their working life. Here, we investigated the effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on normal human OBs showing for the first time that the expression of TRAIL receptors is modulated during OB differentiation. In particular, the TRAIL receptor ratio was in favor of the deaths because of the low expression of DcR2 in undifferentiated OBs, differently it was shifted toward the decoys in differentiated ones. Undifferentiated OBs treated with TRAIL showed reduced cell viability, whereas differentiated OBs displayed TRAIL resistance. The OB sensitiveness to TRAIL was due to the up-regulation of DR5 and the down-regulation of DcR2. The main death receptor involved in TRAIL-reduced OB viability was DR5 as demonstrated by the rescue of cell viability observed in the presence of anti-DR5 neutralizing antibody. Besides the ratio of TRAIL receptors, the sensitivity of undifferentiated OBs to TRAIL-cytotoxic effect was also associated with low mRNA levels of intracellular anti-apoptotic proteins, such as cFLIP, the activation of caspase-8 and -3, as well as the DNA fragmentation. This study suggests that apoptotic effect exerted by TRAIL/TRAIL-receptor system on normal human OB is strictly dependent upon cell differentiation status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-013-9616-6 | DOI Listing |
Environ Int
January 2024
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China. Electronic address:
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel alternative to perfluorooctane sulfonate (PFOS), with environmental health risks largely unknown. The present study aims to unravel the adipogenesis effects and underlying molecular initiating events of OBS, which are crucial for understanding and predicting its adverse outcome. In undifferentiated human mesenchymal stem cells (hMSCs), exposure to 1-100 nM of OBS for 7 days stimulated reactive oxygen species production.
View Article and Find Full Text PDFPLoS One
August 2016
Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
Introduction: The occurrence of skeletal metastases in cancer, e.g. breast cancer (BC), deteriorates patient life expectancy and quality-of-life.
View Article and Find Full Text PDFCell Biochem Biophys
July 2014
Section of Human Anatomy and Histology - R. Amprino, Department of Basic Medical Sciences, Neuroscience and Sense Organs, Medical School, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
Apoptosis can occur throughout the life span of osteoblasts (OBs), beginning from the early stages of differentiation and continuing throughout all stages of their working life. Here, we investigated the effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on normal human OBs showing for the first time that the expression of TRAIL receptors is modulated during OB differentiation. In particular, the TRAIL receptor ratio was in favor of the deaths because of the low expression of DcR2 in undifferentiated OBs, differently it was shifted toward the decoys in differentiated ones.
View Article and Find Full Text PDFTissue Eng Part A
August 2012
Division of Plastic and Reconstructive Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
The use of processed bone allograft to repair large osseous defects of the skull has been limited, given that it lacks the osteogenic cellularity and intrinsic vascular supply which are essential elements for successful graft healing and, at the same time, the areas to be targeted through tissue-engineering applications. In this study, we investigated the effect of predifferentiated rat adipose tissue-derived osteoblastic cells (OBs) and endothelial cells (ECs) on calvarial bone allograft healing and vascularization using an orthotopic critical-sized calvarial defect model. For this purpose, thirty-seven 8 mm critical calvarial defects in Lewis rats were treated with bone allografts seeded with no cells, undifferentiated adipose tissue-derived stem cells (ASC), OBs, ECs, and OBs and ECs simultaneously.
View Article and Find Full Text PDFJ Clin Invest
April 2001
Division of Endocrinology and Metabolism, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
In agreement with evidence that estrogens slow the rate of bone remodeling by suppressing the production of both osteoclasts and osteoblasts, loss of estrogens leads to an increase in the number of osteoclast as well as early osteoblast progenitors (CFU-osteoblasts; CFU-OBs) in the murine bone marrow. Here we show that CFU-OBs are early transit-amplifying progenitors, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!