A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Promotion of autophagy at the maturation step by IL-6 is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. | LitMetric

Increased autophagic vacuoles (AVs) occur in injured or degenerating neurons, under both developmental and pathological situations. Although an induced autophagy has been shown in inflammation response to cell factors, the underlying mechanism(s) remain(s) unknown. Here, we show that both cell factor IL-6 and environmental toxin MPP(+) promote the formation of vacuolation in SHSY5Y cells. By electron and immunofluorescent microscopy analyses, we showed that these structures are acid autolysosomes, containing cellular debris, and labeled by LC3 or LAMP1, markers of autophagosomes or lysosomes, respectively. Combining MPP(+) and IL-6 do not further increase vacuolation of SHSY5Y cells, and the vacuolation is less than that in the MPP(+)-treated group. MPP(+)-induced vacuolation results from significant increase in autophagy formation and delay in autophagy degradation, in relation to a decline of the lysosomal activity of arylsulfatase A. At molecular level, we show that this defect in autolysosomal maturation is independent of mammalian target of rapamycin and p38 inhibitions. Most importantly, we provide the first evidence that activation of ERK pathway is sufficient to commit cell to autophagic vacuolation. The sustained activation is required for MPP(+) to disrupt the autophagic pathway. IL-6 also induces a temporary and significant activation of ERK, but not sustained activation, and change sustained activation in MPP(+)-treated group into temporary activation. Taken together, these findings strongly support that IL-6 promotes the maturation of autophagosomes into functional autolysosomes by regulating ERK.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-013-1676-9DOI Listing

Publication Analysis

Top Keywords

sustained activation
12
vacuolation shsy5y
8
shsy5y cells
8
mpp+-treated group
8
activation erk
8
temporary activation
8
activation
6
il-6
5
vacuolation
5
promotion autophagy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!