Mechanical & cell culture properties of elastin-like polypeptide, collagen, bioglass, and carbon nanosphere composites.

Ann Biomed Eng

Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.

Published: October 2013

Collagen, the most commonly used extra-cellular matrix protein for tissue engineering applications, displays poor mechanical properties. Here, we report on the preparation and characterization of novel multi-component composite systems that incorporate a genetically engineered, biocompatible polymer (elastin-like polypeptide, ELP), biodegradable ceramic (45S5 bioglass), carbon nanosphere chains (CNSC), and minimal amount (~25% w/w) of collagen. We hypothesized that incorporation of bioglass and CNSC would improve mechanical properties of the composites. Our results showed that the tensile strength and elastic modulus nearly doubled after addition of the bioglass and CNSC compared to the control ELP-collagen hydrogels. Further, MC3T3-E1 pre-osteoblasts were cultured within the composite hydrogels and a thorough biochemical and morphological characterization was performed. Live/dead assay confirmed high cell viability (>95%) for all hydrogels by day 21 of culture. Alkaline phosphatase (ALP) activity and osteocalcin (OCN) production assessed the pre-osteoblast differentiation. Normalized ALP activity was highest for the cells cultured within ELP-bioglass-collagen hydrogels, while normalized OCN production was equivalent for all hydrogels. Alizarin red staining confirmed the mineral deposition by the cells within all hydrogels. Thus, the multi-component composite hydrogels displayed improved mechanical and cell culture properties and may be suitable scaffold materials for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-013-0825-3DOI Listing

Publication Analysis

Top Keywords

mechanical cell
8
cell culture
8
culture properties
8
elastin-like polypeptide
8
bioglass carbon
8
carbon nanosphere
8
tissue engineering
8
mechanical properties
8
multi-component composite
8
bioglass cnsc
8

Similar Publications

The emerging prevalence of antimicrobial resistance demands cutting-edge therapeutic agents to treat bacterial infections. We present a synthetic strategy to construct sequence-defined oligomers (SDOs) by using dithiocarbamate (DTC). The antibacterial activity of the synthesized library of SDOs was studied using a Gram-positive and a Gram-negative .

View Article and Find Full Text PDF

XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).

Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.

Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.

View Article and Find Full Text PDF

Cell Mechanics Regulates the Dynamic Anisotropic Remodeling of Fibril Matrix at Large Scale.

Research (Wash D C)

November 2023

Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China.

Living tissues often have anisotropic and heterogeneous organizations, in which developmental processes are coordinated by cells and extracellular matrix modeling. Cells have the capability of modeling matrix in long distance; however, the biophysical mechanism is largely unknown. We investigated the dynamic remodeling of collagen I (COL) fibril matrix by cell contraction with designed patterns of cell clusters.

View Article and Find Full Text PDF

Background: Damage-associated molecular patterns (DAMPs) induced by immunogenic cell death (ICD) may be useful for the immunotherapy to patients undergoing pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to predict the prognosis and immunotherapy responsiveness of PDAC patients using DAMPs-related genes.

Methods: K-means analysis was used to identify the DAMPs-related subtypes of 175 PDAC cases.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!