Bone marrow-derived mesenchymal stem cells (BMSCs) were seeded in a three-dimensional scaffold of silk fibroin (SF) and chitosan (CS) to repair cartilage defects in the rabbit knee. Totally 54 rabbits were randomly assigned to BMSCs + SF/CS scaffold, SF/CS scaffold and control groups. A cylindrical defect was created at the patellofemoral facet of the right knee of each rabbit and repaired by scaffold respectively. Samples were prepared at 4, 8 and 12 weeks post-surgery for gross observation, hematoxylin-eosin and toluidine blue staining, type II collagen immunohistochemistry, Wakitani histology. The results showed that differentiated BMSCs proliferated well in the scaffold. In the BMSCs + SF/CS scaffold group, the bone defect was nearly repaired, the scaffold was absorbed and immunohistochemistry was positive. In the SF/CS scaffold alone group, fiber-like tissues were observed, the scaffold was nearly degraded and immunohistochemistry was weakly positive. In the control group, the defect was not well repaired and positive immunoreactions were not detected. Modified Wakitani scores were superior in the BMSCs + SF/CS scaffold group compared with those in other groups at 4, 8 and 12 weeks (P < 0.05). A SF/CS scaffold can serve as carrier for stem cells to repair cartilage defects and may be used for cartilage tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-013-4944-zDOI Listing

Publication Analysis

Top Keywords

sf/cs scaffold
24
scaffold
12
stem cells
12
repair cartilage
12
cartilage defects
12
bmscs sf/cs
12
scaffold group
12
bone marrow-derived
8
marrow-derived mesenchymal
8
mesenchymal stem
8

Similar Publications

Silk fibroin/chitosan-based anal fistula scaffolds loaded with curcumin and 5-aminosalicylic acid.

Int J Biol Macromol

November 2024

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China. Electronic address:

The present work describes the development of silk fibroin (SF)/chitosan (CS)-based porous composite anal fistula scaffold (SCAFS) with anti-inflammatory and healing functions. The SCAFS comprises an inner layer made from degummed silk fiber using a vertical braiding machine, and an outer layer created by freeze-drying a mixture of short SF fibers and curcumin (CUR)/5-aminosalicylic acid (5-ASA) loaded SF/CS solution. Results revealed that the SCAFS has high porosity of 42.

View Article and Find Full Text PDF

Background: With the rapid growth of the ageing population, chronic diseases such as osteoarthritis have become one of the major diseases affecting the quality of life of elderly people. The main pathological manifestation of osteoarthritis is articular cartilage damage. Alleviating and repairing damaged cartilage has always been a challenge.

View Article and Find Full Text PDF

Introduction: The repair of bone defects is ideally accomplished with bone tissue engineering. Recent studies have explored the possibility of functional modification of scaffolds in bone tissue engineering. We prepared an SF-CS-nHA (SCN) biomimetic bone scaffold and functionally modified the scaffold material by adding a polydopamine (PDA) coating loaded with exosomes (Exos) of marrow mesenchymal stem cells (BMSCs).

View Article and Find Full Text PDF

Silk fibroin-chitosan aerogel reinforced by nanofibers for enhanced osteogenic differentiation in MC3T3-E1 cells.

Int J Biol Macromol

April 2023

Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:

Proper bone scaffolds should be biocompatible, mechanically robust and porous for cell migration. Here, pure silk fibroin (SF)- chitosan (CS) aerogel scaffolds reinforced with different amount of SF nanofibers (SF-CS/NF, SF-CS/NF and SF-CS/NF) are prepared for bone regeneration. Surface morphology and composition were analyzed to ensure successful integration of each component.

View Article and Find Full Text PDF

Purpose: With the goal of increasing the translational efficiency of bone tissue engineering for practical clinical applications, biomimetic composite scaffolds combined with autologous endogenous growth factors for repairing bone defects have become a current research hotspot. In this study, we prepared a silk fibroin/chitosan/nanohydroxyapatite (SF/CS/nHA) composite biomimetic scaffold and then combined it with autologous concentrated growth factor (CGF) to explore the effect of this combination on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the efficiency of repairing critical radial defects.

Methods: Three kinds of SF/CS/nHA composite biomimetic scaffolds with mass fractions of 3%, 4%, and 5% were prepared by vacuum freeze-drying and chemical cross-linking methods, and the characteristics of the scaffolds were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!