A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673046 | PMC |
http://dx.doi.org/10.1098/rspb.2013.0339 | DOI Listing |
Int J Biol Macromol
November 2020
Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-str. 3, 09599 Freiberg, Germany; Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland. Electronic address:
Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary.
View Article and Find Full Text PDFProc Biol Sci
July 2013
Institute of Experimental Physics, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis.
View Article and Find Full Text PDFJ Bacteriol
November 2008
Department of Biology, Indiana University, Bloomington, Indiana 47405-3700, USA.
Caulobacter crescentus cells adhere to surfaces by using an extremely strong polar adhesin called the holdfast. The polysaccharide component of the holdfast is comprised in part of oligomers of N-acetylglucosamine. The genes involved in the export of the holdfast polysaccharide and the anchoring of the holdfast to the cell were previously discovered.
View Article and Find Full Text PDFAppl Environ Microbiol
August 1988
Department of Microbiology, University of British Columbia, Vancouver, British Columbia V6T 1W5, Canada.
Caulobacters are prosthecate (stalked) bacteria that elaborate an attachment organelle called a holdfast at the tip of the cellular stalk. We examined the binding of lectins to the holdfasts of 16 marine Caulobacter strains and 10 freshwater species or strains by using a panel of fluorescein-conjugated lectins and fluorescence microscopy. The holdfasts of all the marine isolates bound to only wheat germ agglutinin (WGA) and other lectins that bind N-acetylglucosamine (GlcNac) residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!