Vibration driven vehicle inspired from grass spike.

Sci Rep

Institute of Nanoscience and Nanotechnology, Lanzhou University, Lanzhou 730000, China.

Published: June 2014

Searching and detecting in some harsh environments such as collapsed buildings, pipes, small cracks are crucial for human rescue and industrial detection, military surveillance etc. However, the drawbacks of traditional moving modes of current vehicles make them difficult to perform such tasks. So developing some new vehicles is urgent. Here, we report a Setaria viridis spike's interesting behavior on a vibrating track, and inspired by that phenomena we develop a concept for cargo delivery, and give a detailed discussion about its working mechanism. This vehicle can move on a wide range of smooth and rough surfaces. Moreover, its climbing capability in tilted and even vertical smooth pipe is also outstanding. These features make it suitable for search-rescue, military reconnaissance, etc. Finally, this vehicle can be reduced into micro/nano-scale, which makes it would play an important role in target-drug delivery, micro-electromechanical systems (MEMS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655337PMC
http://dx.doi.org/10.1038/srep01851DOI Listing

Publication Analysis

Top Keywords

vibration driven
4
driven vehicle
4
vehicle inspired
4
inspired grass
4
grass spike
4
spike searching
4
searching detecting
4
detecting harsh
4
harsh environments
4
environments collapsed
4

Similar Publications

Investigations on two-dimensional materials for efficient carbon dioxide (CO) capture and storage have recently attracted much attention, especially in the global industrial sector. In this work, the CO uptake by three configurations of two-dimensional magnesium oxide was investigated using density functional theory. CO capture analysis was performed considering the geometrical, thermophysical, vibrational, electronic and optical properties.

View Article and Find Full Text PDF

The identification of vibration and reconstruction of sound fields of plate structures are important for understanding the vibroacoustic characteristics of complex structures. This paper presents a data-physics driven (DPD) model integrated with transfer learning (DPDT) for high-precision identification and reconstruction of vibration and noise radiation of plate structures. The model combines the Kirchhoff-Helmholtz integral equation with convolutional neural networks, leveraging physical information to reduce the need for extensive data.

View Article and Find Full Text PDF

Influence of matrix stiffness on microstructure evolution and magnetization of magneto-active elastomers.

Soft Matter

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden, 01069, Germany.

Field-induced microstructure evolution can play an important role in defining the coupled magneto-mechanical response of Magneto-Active Elastomers (MAEs). The behavior of these materials is classically modeled using mechanical, magnetic and coupled magneto-mechanical contributions to their free energy function. If the MAE sample is fully clamped so it cannot deform, the mechanical coupling is reduced to the internal microscopic deformations caused by the particles moving and deforming the elastic medium that surrounds them.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!